最近开始看斯坦福的公开课《Machine Learning》,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧。
【设想】
    最近想要租房,收集了一些信息,得知房价与房间大小有关,那成本函数就可以预测在不同房间大小下租房的价格(PS:价格可能也与该房地理有关,那若把大小和距离市中心距离一并考虑,则属于多参数的线性回归)
【数据】
    1、准备一个ex1data1.txt,第一列为年龄,第二列为价格
    2、导入matlab
          data = load('ex1data1.txt');
    3、赋值给不同的变量
          X = data(:,1);            %第一列年龄作为X
          y = data(:,2);             %第二列价格作为y
    4、查看导入的数据
          plot(X, y,'rx','MarkerSize',10);
         
         我们需要找到一条y=a+bx的直线(a=theta0,b=theta1),最大程度的拟合上图中的点,那如何取得a与b的值,则运用了成本函数,如下:
【公式】
         
                
【MatLab】
data = load('ex1data1.txt');
y = data(:,2);      %选取价格作为y变量

m = length(y);

X = [ones(m, 1), data(:,1)];   %选取房间大小作为第二列,第一列为1
theta0_vals = linspace(-3,3,100);    %确定theta0轴的范围为[-3,3],100个刻度
theta1_vals = linspace(-1,1,100);
for i=1:length(theta0_vals)          %循环执行computeCost函数,找到min(J_vals)的theta0和theta1值  
    for j=1:length(theta1_vals)
         t = [theta0_vals(i); theta1_vals(j)];
         J_vals(i,j) = computeCost(X, y, t);
    end
end
% Because of the way meshgrids work in the surf command, we need to 
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1');


% eg:X(i,:)= [1,6] 
% eg:t= 
   

function J = computeCost(X, y, theta)
m = length(y); % 训练集个数
 
J = 0;
h=0;
for i= 1:m
    h = h + (theta' * X(i,:)'-y(i))^2;  %实现J(theta)公式的后半部
end
J = 1/(2*m)*h
end

eg:
,这就是为什么X变量要特地赋成两列,为了实现a+bx的矩阵效果

 
【可视化结果】
 
         

参考:
斯坦福机器学习的课后习题及程序:
下载

【Machine Learning】单参数线性回归 Linear Regression with one variable的更多相关文章

  1. [Machine Learning] 单变量线性回归(Linear Regression with One Variable) - 线性回归-代价函数-梯度下降法-学习率

    单变量线性回归(Linear Regression with One Variable) 什么是线性回归?线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方 ...

  2. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  3. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  4. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  5. Machine Learning 学习笔记2 - linear regression with one variable(单变量线性回归)

    一.Model representation(模型表示) 1.1 训练集 由训练样例(training example)组成的集合就是训练集(training set), 如下图所示, 其中(x,y) ...

  6. Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)

    本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...

  7. 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)

    面积与房价 训练集 (Training Set) Size       Price 2104       460 852         178 ...... m代表训练集中实例的数量x代表输入变量 ...

  8. 吴恩达机器学习(二) 单变量线性回归(Linear Regression with one variable)

    一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(out ...

  9. 单变量线性回归(Linear Regression with One Variable)与代价函数

    所谓的单变量线性回归问题就是监督学习的一部分. 通过构建数学模型给出一个相对准确的数值,也就是预测模型,通过将数据通过数学模型,衍生至回归问题 通过以下的几个例子,我们来研究单变量线性回归. 1.王阿 ...

随机推荐

  1. android 使用asm.jar将android手机屏幕投射到电脑

    使用asm.jar将Android手机到电脑屏幕投影 有时候可能须要将手机上的一些操作投影出来,比方一些App Demo的展示等.事实上,有专门的硬件设备能干这件事儿.但不是必需专门为展示个Demo去 ...

  2. python学习笔记(五岁以下儿童)深深浅浅的副本复印件,文件和文件夹

    python学习笔记(五岁以下儿童) 深拷贝-浅拷贝 浅拷贝就是对引用的拷贝(仅仅拷贝父对象) 深拷贝就是对对象的资源拷贝 普通的复制,仅仅是添加了一个指向同一个地址空间的"标签" ...

  3. C++ AMP 介绍(两)

    C++ AMP 介绍(两) 最后更新:2014-05-02 读前提:<C++ AMP介绍(一个)> 周边环境:Windows 8.1 64bit英文版,Visual Studio 2013 ...

  4. Javascript操作阵列

    头操作unshift和shift var arr = [1, 2, 3]; arr.unshift(4); // arr = [4, 1, 2, 3]; 头加 arr.shift(); // arr ...

  5. Node.js日志框架选型比較:Winston

    日志对于问题定位.调试,系统性能调优至关重要,尤其是系统复杂以及在线执行的情况下. 好的开发框架都会有一个可开启关闭/可配置记录级别的日志系统.我们从下面几个方面来做选型: 1. 每行日志都须要有准确 ...

  6. 六大利器助Java程序开发事半功倍

    实用的开发工具对于Java程序开发者来说,工作起来事半功倍.本文中小编将为大家列举包括开发环境.分析测试.代码保护等实用工具. 开发环境 Sonarqube Sonarqube是一个开源平台,是一款代 ...

  7. asp.net MVC4 +MVCpager

    asp.net MVC4 +MVCpager 无刷新分页 本人菜鸟,最近在用MVC4和MVCpager做无刷新分页时,发现点击下一页时数据不是Ajax提交的,弄了好久终于找到原因,原来还是Jquery ...

  8. Cocos2d-x 3.1.1开发环境

    Windows7上搭建Cocos2d-x 3.1.1开发环境   前言 现在,越来越多的公司采用Cocos2d-x 3.0来开发游戏了,但是现在这样的文章并不多,所以打算写一系列来帮助初学者快速掌握C ...

  9. SpringMVC Hibernate+Spring+Spring MVC+Bootstrap的管理系统实现

    SpringMVC学习系列(12) 完结篇 之 基于Hibernate+Spring+Spring MVC+Bootstrap的管理系统实现 到这里已经写到第12篇了,前11篇基本上把Spring M ...

  10. 大规模web服务开发技术

    大规模web服务开发技术 总评        这本书是日本一个叫hatena的大型网站的CTO写的,通过hatena网站从小到大的演进来反应一个web系统从小到大过程中的各种系统和技术架构变迁,比较接 ...