注:原文代码链接http://scikit-learn.org/stable/auto_examples/text/mlcomp_sparse_document_classification.html

运行结果为:

Loading 20 newsgroups training set...
20 newsgroups dataset for document classification (http://people.csail.mit.edu/jrennie/20Newsgroups)
13180 documents
20 categories
Extracting features from the dataset using a sparse vectorizer
done in 139.231000s
n_samples: 13180, n_features: 130274
Loading 20 newsgroups test set...
done in 0.000000s
Predicting the labels of the test set...
5648 documents
20 categories
Extracting features from the dataset using the same vectorizer
done in 7.082000s
n_samples: 5648, n_features: 130274
Testbenching a linear classifier...
parameters: {'penalty': 'l2', 'loss': 'hinge', 'alpha': 1e-05, 'fit_intercept': True, 'n_iter': 50}
done in 22.012000s
Percentage of non zeros coef: 30.074190
Predicting the outcomes of the testing set
done in 0.172000s
Classification report on test set for classifier:
SGDClassifier(alpha=1e-05, average=False, class_weight=None, epsilon=0.1,
eta0=0.0, fit_intercept=True, l1_ratio=0.15,
learning_rate='optimal', loss='hinge', n_iter=50, n_jobs=1,
penalty='l2', power_t=0.5, random_state=None, shuffle=True,
verbose=0, warm_start=False) precision recall f1-score support alt.atheism 0.95 0.93 0.94 245
comp.graphics 0.85 0.91 0.88 298
comp.os.ms-windows.misc 0.88 0.88 0.88 292
comp.sys.ibm.pc.hardware 0.82 0.80 0.81 301
comp.sys.mac.hardware 0.90 0.92 0.91 256
comp.windows.x 0.92 0.88 0.90 297
misc.forsale 0.87 0.89 0.88 290
rec.autos 0.93 0.94 0.94 324
rec.motorcycles 0.97 0.97 0.97 294
rec.sport.baseball 0.97 0.97 0.97 315
rec.sport.hockey 0.98 0.99 0.99 302
sci.crypt 0.97 0.96 0.96 297
sci.electronics 0.87 0.89 0.88 313
sci.med 0.97 0.97 0.97 277
sci.space 0.97 0.97 0.97 305
soc.religion.christian 0.95 0.96 0.95 293
talk.politics.guns 0.94 0.94 0.94 246
talk.politics.mideast 0.97 0.99 0.98 296
talk.politics.misc 0.96 0.92 0.94 236
talk.religion.misc 0.89 0.84 0.86 171 avg / total 0.93 0.93 0.93 5648 Confusion matrix:
[[227 0 0 0 0 0 0 0 0 0 0 1 2 1 1 1 0 1
0 11]
[ 0 271 3 8 2 5 2 0 0 1 0 0 3 1 1 0 0 1
0 0]
[ 0 7 256 14 5 6 1 0 0 0 0 0 2 0 1 0 0 0
0 0]
[ 1 8 12 240 9 3 12 2 0 0 0 1 12 0 0 1 0 0
0 0]
[ 0 1 3 6 235 2 4 0 0 0 0 1 3 0 1 0 0 0
0 0]
[ 0 17 9 4 0 260 0 0 1 1 0 0 2 0 2 0 1 0
0 0]
[ 0 1 3 7 3 0 257 7 2 0 0 1 8 0 1 0 0 0
0 0]
[ 0 0 0 2 1 0 5 305 2 3 0 0 4 1 0 0 1 0
0 0]
[ 0 0 0 0 1 0 3 3 285 0 0 0 1 0 0 1 0 0
0 0]
[ 0 0 0 0 0 0 3 2 0 305 2 1 1 0 0 0 0 0
1 0]
[ 0 0 0 0 0 0 1 0 1 0 300 0 0 0 0 0 0 0
0 0]
[ 0 0 1 1 0 2 0 1 0 0 0 284 0 1 1 0 2 2
1 1]
[ 0 2 2 10 2 2 6 5 1 0 1 1 279 1 1 0 0 0
0 0]
[ 0 3 0 0 1 1 1 0 0 0 0 0 0 269 0 1 1 0
0 0]
[ 0 5 0 0 1 0 0 0 0 0 2 0 1 0 295 0 0 0
1 0]
[ 1 1 1 0 0 1 0 1 0 0 0 0 0 1 1 282 1 0
0 3]
[ 0 0 1 0 0 0 0 0 1 3 0 0 1 0 0 1 232 1
5 1]
[ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 293
0 0]
[ 0 2 0 0 0 0 2 0 0 1 0 1 0 1 0 0 7 4
216 2]
[ 11 0 0 0 0 0 0 0 0 0 0 1 0 2 0 9 2 1
2 143]]
Testbenching a MultinomialNB classifier...
parameters: {'alpha': 0.01}
done in 0.608000s
Percentage of non zeros coef: 100.000000
Predicting the outcomes of the testing set
done in 0.203000s
Classification report on test set for classifier:
MultinomialNB(alpha=0.01, class_prior=None, fit_prior=True) precision recall f1-score support alt.atheism 0.90 0.92 0.91 245
comp.graphics 0.81 0.89 0.85 298
comp.os.ms-windows.misc 0.87 0.83 0.85 292
comp.sys.ibm.pc.hardware 0.82 0.83 0.83 301
comp.sys.mac.hardware 0.90 0.92 0.91 256
comp.windows.x 0.90 0.89 0.89 297
misc.forsale 0.90 0.84 0.87 290
rec.autos 0.93 0.94 0.93 324
rec.motorcycles 0.98 0.97 0.97 294
rec.sport.baseball 0.97 0.97 0.97 315
rec.sport.hockey 0.97 0.99 0.98 302
sci.crypt 0.95 0.95 0.95 297
sci.electronics 0.90 0.86 0.88 313
sci.med 0.97 0.96 0.97 277
sci.space 0.95 0.97 0.96 305
soc.religion.christian 0.91 0.97 0.94 293
talk.politics.guns 0.89 0.96 0.93 246
talk.politics.mideast 0.95 0.98 0.97 296
talk.politics.misc 0.93 0.87 0.90 236
talk.religion.misc 0.92 0.74 0.82 171 avg / total 0.92 0.92 0.92 5648 Confusion matrix:
[[226 0 0 0 0 0 0 0 0 1 0 0 0 0 2 7 0 0
0 9]
[ 1 266 7 4 1 6 2 2 0 0 0 3 4 1 1 0 0 0
0 0]
[ 0 11 243 22 4 7 1 0 0 0 0 1 2 0 0 0 0 0
1 0]
[ 0 7 12 250 8 4 9 0 0 1 1 0 9 0 0 0 0 0
0 0]
[ 0 3 3 5 235 2 3 1 0 0 0 2 1 0 1 0 0 0
0 0]
[ 0 19 5 3 2 263 0 0 0 0 0 1 0 1 1 0 2 0
0 0]
[ 0 1 4 9 3 1 243 9 2 3 1 0 8 0 0 0 2 2
2 0]
[ 0 0 0 1 1 0 5 304 1 2 0 0 3 2 3 1 1 0
0 0]
[ 0 0 0 0 0 2 2 3 285 0 0 0 1 0 0 0 0 0
0 1]
[ 0 1 0 0 0 1 1 3 0 304 5 0 0 0 0 0 0 0
0 0]
[ 0 0 0 0 0 0 0 0 1 2 299 0 0 0 0 0 0 0
0 0]
[ 0 2 2 1 0 1 2 0 0 0 0 283 1 0 0 0 2 1
2 0]
[ 0 11 1 9 3 1 3 5 1 0 1 4 270 1 3 0 0 0
0 0]
[ 0 2 0 1 1 1 0 0 0 0 0 1 0 266 2 1 0 0
2 0]
[ 0 2 0 0 1 0 0 0 0 0 0 2 1 1 296 0 1 1
0 0]
[ 3 1 0 0 0 0 0 0 0 0 1 0 0 2 0 283 0 1
2 0]
[ 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 237 1
3 1]
[ 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 291
0 0]
[ 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 17 6
206 0]
[ 18 1 0 0 0 0 0 0 0 1 0 0 0 0 0 14 4 2
4 127]]

步骤为:

一、preprocessing

1.加载训练集(training set)

2.训练集特征提取,用TfidfVectorizer,得到训练集上的x_train和y_train

3.加载测试集(test set)

4.测试集特征提取,用TfidfVectorizer,得到测试集上的x_train和y_train

二、定义Benchmark classifiers

5.训练,clf = clf_class(**params).fit(X_train, y_train)

6.测试,pred = clf.predict(X_test)

7.测试集上分类报告,print(classification_report(y_test, pred,target_names=news_test.target_names))

8.confusion matrix,cm = confusion_matrix(y_test, pred)

三、训练

9.调用两个分类器,SGDClassifier和MultinomialNB

Classification of text documents: using a MLComp dataset的更多相关文章

  1. Clustering text documents using k-means

    源代码的链接为http://scikit-learn.org/stable/auto_examples/text/document_clustering.html Loading 20 newsgro ...

  2. scikit-learn:4.2.3. Text feature extraction

    http://scikit-learn.org/stable/modules/feature_extraction.html 4.2节内容太多,因此将文本特征提取单独作为一块. 1.the bag o ...

  3. Python scikit-learn机器学习工具包学习笔记

    feature_selection模块 Univariate feature selection:单变量的特征选择 单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标 ...

  4. 特征选择 (feature_selection)

    目录 特征选择 (feature_selection) Filter 1. 移除低方差的特征 (Removing features with low variance) 2. 单变量特征选择 (Uni ...

  5. sklearn—特征工程

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  6. scikit-learn:3.3. Model evaluation: quantifying the quality of predictions

    參考:http://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter 三种方法评估模型的预測质量: Est ...

  7. [Scikit-learn] 1.1 Generalized Linear Models - Comparing various online solvers

    数据集分割 一.Online learning for 手写识别 From: Comparing various online solvers An example showing how diffe ...

  8. [Scikit-learn] Yield miniBatch for online learning.

    From: Out-of-core classification of text documents Code:  """ ======================= ...

  9. sklearn中的模型评估-构建评估函数

    1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scor ...

随机推荐

  1. 我眼中的C#3.0 摘自于网络:http://www.cnblogs.com/joinger/articles/1297237.html

    每次有新技术发布时,我们总能感受到两种截然不同的情绪: 一种是恐惧和抵抗,伴随着这种情绪的还有诸如"C# 2.0用的挺好的,为什么要在C# 3.0搞到那么复杂?"或者"我 ...

  2. Content-Type小解

    在Http请求中,经常用Content-Type来定义网络文件的类型和网页的编码,在发送请求,返回数据时决定浏览器将以什么形式,什么编码来读取此文件. 常用类型: text 文本类型 1.text/p ...

  3. springmvc中的几个问题

    一   url-pattern的问题: <!-- No mapping found for HTTP request with URI [/WEB-INF/jsp/homePage.jsp] i ...

  4. java设计模式案例详解:观察者模式

    观察者模式的应用场景: 1. 对一个对象状态的更新,需要其他对象同步更新,而且其他对象的数量动态可变. 2. 对象仅需要将自己的更新通知给其他对象而不需要知道其他对象的细节. 举个例子说明,这个例子讲 ...

  5. Android手机图片适配问题

    需求:今天在做ListView的时候遇到一个问题,就是ListView中加载图片的时候.有些图片的大小比较大,所以会出现图片显示不充分的问题. 首先,再不做任何处理的情况下,大小是这样的.宽度是Wra ...

  6. Android开发 R cannot be resolved to a variable问题的分析

    R文件是系统自动生成的,如果没出现的话,你的XML文件是不是有错误?是否之前修改过res文件夹下面.xml文件 R文件没有生成的情况有几种: 1.项目没有自动编译:这种时候只需要简单的编译一下工程就会 ...

  7. ios 概况了解

    iOS的系统架构分为四个层次:( iOS是基于UNIX内核,android是基于Linux内核) 核心操作系统层(Core OS layer).核心服务层(Core Services layer).媒 ...

  8. Discuz登录慢、退出也慢的原因?

     Discuz登录慢.退出也慢的原因? 2009-02-21 12:50:11 分类: 转载自:http://www.aiseminar.cn/bbs/thread-201-1-1.html 由于服务 ...

  9. 表达式语言--在MVC中应用表达式语言

    之前讲解的MVC设计模式中一直有DAO存在,而且所有的对象都保存在VO之中,那么这时如果将一个VO传递到JSP文件中,那么JSP需要导入VO包,如果使用表达式语言的话,导入VO包就没有任何意义了. V ...

  10. Vacations

    Vacations Vasya has n days of vacations! So he decided to improve his IT skills and do sport. Vasya ...