先说下题目的意思:

      在一个二维坐标系中有N个点,某人要来个走遍所有点的旅行,但是他的车每次加油后只能走M个单位距离;所以要在这个N点中选一些建立加油站;问题来了:i^th  点 建加油站的花费是  2^(i-1); 求最小话费 用二进制表示;(其中1号必须建立加油站)

  思路:有  10000>01111; 所以我们可以一开始都给这些个点染色(都建立加油站),然后从高位枚举这一位可以不建立加油站么?可以的话给他去除掉;依次类推;这样就可以维护这个“最小”;

  解法:上述思路的关键是给定一个染色方案如何判断是否合法:我的判断方法是并查集

        1)根据染色分俩堆;

        2)把建立加油站的点建立最小生成树,当距离大于M 时停止;

        3)看建立的树是否把所有的加油点囊括在内,有不再的肯定是false;

        4)没有加油站的点在   暴力判断下   有没有  离这个点的距离   小于 M/2 的加油站点;就可以了;没有就是false;

        5)至此结束;

#include <cstdio>
#include <string>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cmath>
#include <map>
using namespace std;
typedef long long LL;
struct point
{
int x,y;
void input()
{
scanf("%d%d",&x,&y);
}
};
struct Edge
{
int s,to;
double dis;
Edge(){}
Edge(int s,int to,double dis):s(s),to(to),dis(dis){}
bool operator < (const Edge &rht) const
{
return dis<rht.dis;
}
};
point ko[129];
Edge edge[129*129];
int DIS[129][129],fa[129], n,pos,m;
bool flag[129];
void inint(bool t)
{
pos=0;
if(t)memset(flag,1,sizeof flag);
for(int i=1;i<=128;i++)fa[i]=i;
}
int Find(int x)
{
return x==fa[x]?x:fa[x]=Find(fa[x]);
}
double get_dis(point a,point b)
{
int x=a.x-b.x;int y=a.y-b.y;
return ceil(sqrt(1.0*(x*x+y*y)));
}
int Set1[129],pos1, Set2[129],pos2;
bool make()
{
inint(false);
pos1=pos2=0;
for(int i=1;i<=n;i++)
if(flag[i]) Set1[pos1++]=i;
else Set2[pos2++]=i;
for(int i=0;i<pos1;i++) for(int j=i+1;j<pos1;j++)
{
double dis=DIS[Set1[i]][Set1[j]]; edge[pos++]=Edge(Set1[i],Set1[j],dis);
}
sort(edge,edge+pos);
for(int i=0;i<pos;i++)
{
Edge & tmp=edge[i];
if(tmp.dis>m) break;
int x=Find(tmp.s);
int y=Find(tmp.to);
if(x!=y) fa[x]=y;
}
int FA=Find(1);
for(int i=0;i<pos1;i++)
if(FA!=Find(Set1[i])) return false;
for(int i=0;i<pos2;i++)
{
int j=0;
for(;j<pos1;j++)
{
if(DIS[Set2[i]][Set1[j]]*2.0<=m) break;
}
if(j==pos1) return false;
}
return true;
}
void solve()
{
for(int i=n;i>=2;i--)
{
flag[i]=false;
if(make()) continue;
flag[i]=true;
}
int i;
for(i=n;i>=1;i--) if(flag[i]) break;
for(;i>=1;i--)
printf("%d",flag[i]);
puts("");
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
inint(true);
for(int i=1;i<=n;i++)ko[i].input();
for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)
DIS[i][j]=get_dis(ko[i],ko[j]);
if(!make()){puts("-1");continue;}
solve();
}
return 0;
}

  

HDU 4435 charge-station (并查集)的更多相关文章

  1. HDU 1811 拓扑排序 并查集

    有n个成绩,给出m个分数间的相对大小关系,问是否合法,矛盾,不完全,其中即矛盾即不完全输出矛盾的. 相对大小的关系可以看成是一个指向的条件,如此一来很容易想到拓扑模型进行拓扑排序,每次检查当前入度为0 ...

  2. hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点)

    hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点) 题意: 给一张无向连通图,有两种操作 1 u v 加一条边(u,v) 2 u v 计算u到v路径上桥的个数 ...

  3. <hdu - 1232> 畅通工程 并查集问题 (注意中的细节)

    本题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232  结题思路:因为题目是汉语的,那我就不解释题意了,要求的是最少建设的道路,我们可以用并查集来做这 ...

  4. HDU 5441 Travel(并查集+统计节点个数)

    http://acm.hdu.edu.cn/showproblem.php?pid=5441 题意:给出一个图,每条边有一个距离,现在有多个询问,每个询问有一个距离值d,对于每一个询问,计算出有多少点 ...

  5. HDU 4313 Matrix(并查集)

    http://acm.hdu.edu.cn/showproblem.php?pid=4313 题意: 给出一棵树,每条边都有权值,其中有几个点是特殊点,现在破坏边还使得这几个特殊点互相不可达,需要使得 ...

  6. hdu 1558 (线段相交+并查集) Segment set

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1558 题意是在坐标系中,当输入P(注意是大写,我当开始就wa成了小写)的时候输入一条线段的起点坐标和终点坐 ...

  7. HDU 3018 Ant Trip (并查集求连通块数+欧拉回路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3018 题目大意:有n个点,m条边,人们希望走完所有的路,且每条道路只能走一遍.至少要将人们分成几组. ...

  8. hdu 1863 畅通工程 (并查集+最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1863 畅通工程 Time Limit: 1000/1000 MS (Java/Others)    M ...

  9. HDU 6109 数据分割 并查集,SET

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6109 题意:中文题面 解法:每次都贪心地尝试将尽量多的条件放进当前这组,遇到第一个与已有条件冲突时,就 ...

随机推荐

  1. 百度地图之UI控制

    在本文中主要介绍百度地图UI控制功能,即控制地图是否有缩放.平移.双击放大.旋转.俯视的功能以及控制是否显示内置缩放组件.指南针位置等.在文中采用标签监听使每个控制功能的方法见名知义,代码原型来源百度 ...

  2. Houdini Pyro流体的插值变速

    用简单的节点尝试了下Houdini流体的变速,这里的流体指的是Pyro,而不是FLIP.FLIP仅仅须要记录ID属性然后TimeBlend & TimeShift就可以. Vimeo 上图是一 ...

  3. svn经常使用命令具体解释(非常全,非常有用)

    ubuntu下安装subversionclient: sudo apt-getinstall subversion subversion-tools 1.检出 svn  co  http://路径(文 ...

  4. 杭电acm阶段之理工大版

    想參加全国软件设计大赛C/C++语言组的同学,假设前一篇<C和指针课后练习题总结>没看完的,请先看完而且依照上面的训练做完,然后做以下的训练. 传送门:http://blog.csdn.n ...

  5. Thrift反序列化导致OOM(转)

    概述 最近线上的日志处理服务偶尔会出现Out Of Memory的问题,从Exception的call stack中顺藤摸瓜,最终定位到是thrift反序列化的问题. 发现问题 先交代一下问题现场: ...

  6. poj2226(最小点覆盖)

    传送门:Muddy Fields 题意:一个由r行c列方格组成的田地,里面有若干个方格充满泥泞,其余方格都是草.要用长度不限,宽度为1的长木板来覆盖这些泥方格,但不能覆盖草地.最少要用多少个长木板. ...

  7. Dark Side of Cloud Storage —— 数据对像的分块消重

    数据对像(可以通俗地认为是文件)的分块存储具有久远的历史.长久以来,单机文件系统一直将文件切分为若干固定大小的小块.其主要目的是为了进行有效的空间管理.互联网时代,大规模数据存储逐步发展起来.出于降低 ...

  8. 2014 CSDN博文大赛终于获奖名单发布

    博文大赛第二阶段(2014年7月15日-2014年8月10日)已经结束,决赛获奖名单已在8月11日出炉. 现将获奖名单发布: 移动开发 NO.1    罗升阳    Luoshengyang    S ...

  9. poj2253(最短路小变形)

    题目连接:http://poj.org/problem?id=2253 题意:给出一个无向图,求一条1~2的路径使得路径上的最大边权最小. 分析:dij将距离更新改成取最大值即可,即dp[i]表示到达 ...

  10. zoj3747(递推dp)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5170 题意:给n个士兵排队,每个士兵三种G.R.P可选,求至少有m个 ...