Memcached源码分析之items.c
- #include "memcached.h"
- #include <sys/stat.h>
- #include <sys/socket.h>
- #include <sys/signal.h>
- #include <sys/resource.h>
- #include <fcntl.h>
- #include <netinet/in.h>
- #include <errno.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include <string.h>
- #include <time.h>
- #include <assert.h>
- #include <unistd.h>
- static void item_link_q(item *it);
- static void item_unlink_q(item *it);
- #define LARGEST_ID POWER_LARGEST
- typedef struct {
- uint64_t evicted;
- uint64_t evicted_nonzero;
- rel_time_t evicted_time;
- uint64_t reclaimed;
- uint64_t outofmemory;
- uint64_t tailrepairs;
- uint64_t expired_unfetched;
- uint64_t evicted_unfetched;
- uint64_t crawler_reclaimed;
- } itemstats_t;
- static item *heads[LARGEST_ID]; //各个slabclass的LRU队列头指针数组
- static item *tails[LARGEST_ID]; //各个slabclass的LRU队列尾指针数组
- static crawler crawlers[LARGEST_ID]; //各个slabclass的item爬虫数组
- static itemstats_t itemstats[LARGEST_ID]; //各个slabclass的item统计数组
- static unsigned int sizes[LARGEST_ID]; //各个slabclass的chunk大小数组
- static int crawler_count = 0;
- static volatile int do_run_lru_crawler_thread = 0;
- static int lru_crawler_initialized = 0;
- static pthread_mutex_t lru_crawler_lock = PTHREAD_MUTEX_INITIALIZER;
- static pthread_cond_t lru_crawler_cond = PTHREAD_COND_INITIALIZER;
- //重置统计
- void item_stats_reset(void) {
- mutex_lock(&cache_lock);
- memset(itemstats, 0, sizeof(itemstats));
- mutex_unlock(&cache_lock);
- }
- /* Get the next CAS id for a new item. */
- uint64_t get_cas_id(void) {
- static uint64_t cas_id = 0;
- return ++cas_id;
- }
- /* Enable this for reference-count debugging. */
- #if 0
- # define DEBUG_REFCNT(it,op) \
- fprintf(stderr, "item %x refcnt(%c) %d %c%c%c\n", \
- it, op, it->refcount, \
- (it->it_flags & ITEM_LINKED) ? 'L' : ' ', \
- (it->it_flags & ITEM_SLABBED) ? 'S' : ' ')
- #else
- # define DEBUG_REFCNT(it,op) while(0)
- #endif
- /**
- 算出item总大小
- */
- static size_t item_make_header(const uint8_t nkey, const int flags, const int nbytes,
- char *suffix, uint8_t *nsuffix) {
- /* suffix is defined at 40 chars elsewhere.. */
- *nsuffix = (uint8_t) snprintf(suffix, 40, " %d %d\r\n", flags, nbytes - 2);
- return sizeof(item) + nkey + *nsuffix + nbytes;
- }
- /**
- item分配
- 把这个函数弄清楚,基本就把memcached内存管理机制大体弄清楚了。
- */
- item *do_item_alloc(char *key, const size_t nkey, const int flags,
- const rel_time_t exptime, const int nbytes,
- const uint32_t cur_hv) {
- uint8_t nsuffix;
- item *it = NULL;
- char suffix[40];
- size_t ntotal = item_make_header(nkey + 1, flags, nbytes, suffix, &nsuffix); //item总大小
- if (settings.use_cas) {
- ntotal += sizeof(uint64_t); //如果有用到cas 那么item大小还要加上unit64_t的size
- }
- unsigned int id = slabs_clsid(ntotal); //根据item大小,找到适合的slabclass
- if (id == 0)
- return 0;
- mutex_lock(&cache_lock); //cache锁
- /* do a quick check if we have any expired items in the tail.. */
- /* 准备分配新的item了,随便快速瞄一下lru链表末尾有没有过期item,有的话就用过期的空间 */
- int tries = 5;
- int tried_alloc = 0;
- item *search;
- void *hold_lock = NULL;
- rel_time_t oldest_live = settings.oldest_live;
- search = tails[id]; //这个tails是一个全局变量,tails[xx]是id为xx的slabclass lru链表的尾部
- /* We walk up *only* for locked items. Never searching for expired.
- * Waste of CPU for almost all deployments */
- //从LRU链表尾部(就是最久没使用过的item)开始往前找
- for (; tries > 0 && search != NULL; tries--, search=search->prev) {
- if (search->nbytes == 0 && search->nkey == 0 && search->it_flags == 1) {
- /* We are a crawler, ignore it. */
- /*
- 这里注释意思是说我们现在是以爬虫的身份来爬出过期的空间,
- 像爬到这种很怪的item,就别管了,不是爬虫要做的事,不要就行了。
- */
- tries++;
- continue;
- }
- /**
- 你会看到很多地方有这个hv,简单说下,其实它是对item的一个hash,得到hv值,这个hv主要有两个
- 作用:
- 1)用于hash表保存item,通过hv计算出哈希表中的桶号
- 2)用于item lock表中锁住item,通过hv计算出应该用item lock表中哪个锁对当前item进行加锁
- 这两者都涉及到一个粒度问题,不可能保证每个不一样的key的hv不会相同,所有hash方法都可能
- 出现冲突。
- 所以hash表中用链表的方式处理冲突的item,而item lock表中会多个item共享一个锁,或者说
- 多个桶共享一个锁。
- */
- uint32_t hv = hash(ITEM_key(search), search->nkey);
- /**
- 尝试去锁住当前item。
- */
- if (hv == cur_hv || (hold_lock = item_trylock(hv)) == NULL)
- continue;
- /* Now see if the item is refcount locked */
- if (refcount_incr(&search->refcount) != 2) {
- refcount_decr(&search->refcount);
- /* Old rare bug could cause a refcount leak. We haven't seen
- * it in years, but we leave this code in to prevent failures
- * just in case
- 没看懂这里的意思.....
- */
- if (settings.tail_repair_time &&
- search->time + settings.tail_repair_time < current_time) {
- itemstats[id].tailrepairs++;
- search->refcount = 1;
- do_item_unlink_nolock(search, hv);
- }
- if (hold_lock)
- item_trylock_unlock(hold_lock);
- continue;
- }
- /* Expired or flushed */
- //超时了...
- if ((search->exptime != 0 && search->exptime < current_time)
- || (search->time <= oldest_live && oldest_live <= current_time)) {
- itemstats[id].reclaimed++;
- if ((search->it_flags & ITEM_FETCHED) == 0) {
- itemstats[id].expired_unfetched++;
- }
- it = search; //拿下空间
- slabs_adjust_mem_requested(it->slabs_clsid, ITEM_ntotal(it), ntotal); //更新统计数据
- /**
- 什么是link,在这简单说下,就是把item加到哈希表和LRU链表的过程。详见items::do_item_link函数这里把item旧的link取消掉,当前函数do_item_alloc的工作只是拿空间,而往后可知道拿到item空间后会对这块item进行“link”工作,而这里这块item空间是旧的item超时然后拿来用的,所以先把它unlink掉
- */
- do_item_unlink_nolock(it, hv);
- /* Initialize the item block: */
- it->slabs_clsid = 0;
- } else if ((it = slabs_alloc(ntotal, id)) == NULL) {/*如果没有找到超时的item,则
- 调用slabs_alloc分配空间,详见slabs_alloc
- 如果slabs_alloc分配空间失败,即返回NULL,则往下走,下面的代码是
- 把LRU列表最后一个给淘汰,即使item没有过期。
- 这里一般是可用内存已经满了,需要按LRU进行淘汰的时候。
- //************mark: $1**************
- */
- tried_alloc = 1; //标记一下,表示有进入此分支,表示有尝试过调用slabs_alloc去分配新的空间。
- //记下被淘汰item的信息,像我们使用memcached经常会查看的evicted_time就是在这里赋值啦!
- if (settings.evict_to_free == 0) {
- itemstats[id].outofmemory++;
- } else {
- itemstats[id].evicted++;
- itemstats[id].evicted_time = current_time - search->time; //被淘汰的item距离上次使用多长时间了
- if (search->exptime != 0)
- itemstats[id].evicted_nonzero++;
- if ((search->it_flags & ITEM_FETCHED) == 0) {
- itemstats[id].evicted_unfetched++;
- }
- it = search;
- slabs_adjust_mem_requested(it->slabs_clsid, ITEM_ntotal(it), ntotal);//更新统计数据
- do_item_unlink_nolock(it, hv); //从哈希表和LRU链表中删掉
- /* Initialize the item block: */
- it->slabs_clsid = 0;
- /*
- 如果当前slabclass有item被淘汰掉了,说明可用内存都满了,再也没有
- slab可分配了,
- 而如果 slab_automove=2 (默认是1),这样会导致angry模式,
- 就是只要分配失败了,就马上进行slab重分配:把别的slabclass空间牺牲
- 掉一些,马上给现在的slabclass分配空间,而不会合理地根据淘汰统计
- 数据来分析要怎么重分配(slab_automove = 1则会)。
- */
- if (settings.slab_automove == 2)
- slabs_reassign(-1, id);
- }
- }
- refcount_decr(&search->refcount);
- /* If hash values were equal, we don't grab a second lock */
- if (hold_lock)
- item_trylock_unlock(hold_lock);
- break;
- }
- /**
- 如果上面的for循环里面没有找到空间,并且没有进入过else if ((it = slabs_alloc(ntotal, id)) == NULL)这个分支没有
- 尝试调slabs_alloc分配空间(有这种可能性),那么,下面这行代码就是再尝试分配。
- 你会觉得上面那个循环写得特纠结,逻辑不清,估计你也看醉了。其实整个分配原则是这样子:
- 1)先从LRU链表找下看看有没有恰好过期的空间,有的话就用这个空间。
- 2)如果没有过期的空间,就分配新的空间。
- 3)如果分配新的空间失败,那么往往是内存都用光了,则从LRU链表中把最旧的即使没过期的item淘汰掉,空间分给新的item用。
- 问题是:这个从“LRU链表找到的item”是一个不确定的东西,有可能这个item数据异常,有可能这个item由于与别的item共用锁的桶号
- 这个桶被锁住了,所以总之各种原因这个item此刻不一定可用,因此用了一个循环尝试找几次(上面是5)。
- 所以逻辑是:
- 1)我先找5次LRU看看有没有可用的过期的item,有就用它。(for循环5次)
- 2)5次没有找到可用的过期的item,那我分配新的。
- 3)分配新的不成功,那我再找5次看看有没有可用的虽然没过期的item,淘汰它,把空间给新的item用。(for循环5次)
- 那么这里有个问题,如果代码要写得逻辑清晰一点,我得写两个for循环,一个是为了第2)步前“找可用的过期的”item,
- 一个是第2)步不成功后“找可用的用来淘汰的”空间。而且有重复的逻辑“找到可用的”,所以memcached作者就合在一起了,
- 然后只能把第2)步也塞到for循环里面,确实挺尴尬的。。。估计memcached作者也写得很纠结。。。
- 所以就很有可能出现5次都没找到可用的空间,都没进入过elseif那个分支就被continue掉了,为了记下有没有进过elseif
- 分支就挫挫地用一个tried_alloc变量来做记号。。
- */
- if (!tried_alloc && (tries == 0 || search == NULL))
- it = slabs_alloc(ntotal, id);
- if (it == NULL) {
- itemstats[id].outofmemory++;
- mutex_unlock(&cache_lock);
- return NULL; //没错!会有分配新空间不成功,而且尝试5次淘汰旧的item也没成功的时候,只能返回NULL。。
- }
- assert(it->slabs_clsid == 0);
- assert(it != heads[id]);
- //来到这里,说明item分配成功,下面主要是一些初始化工作。
- /* Item initialization can happen outside of the lock; the item's already
- * been removed from the slab LRU.
- */
- it->refcount = 1; /* the caller will have a reference */
- mutex_unlock(&cache_lock);
- it->next = it->prev = it->h_next = 0;
- it->slabs_clsid = id;
- DEBUG_REFCNT(it, '*');
- it->it_flags = settings.use_cas ? ITEM_CAS : 0;
- it->nkey = nkey;
- it->nbytes = nbytes;
- memcpy(ITEM_key(it), key, nkey);
- it->exptime = exptime;
- memcpy(ITEM_suffix(it), suffix, (size_t)nsuffix);
- it->nsuffix = nsuffix;
- return it;
- }
- /**
- 把这块item free掉,以供再利用,注意这里的free不是指把内存空间释放哦,
- 而是把这块item 变为“空闲”
- */
- void item_free(item *it) {
- size_t ntotal = ITEM_ntotal(it);
- unsigned int clsid;
- assert((it->it_flags & ITEM_LINKED) == 0);
- assert(it != heads[it->slabs_clsid]);
- assert(it != tails[it->slabs_clsid]);
- assert(it->refcount == 0);
- /* so slab size changer can tell later if item is already free or not */
- clsid = it->slabs_clsid;
- it->slabs_clsid = 0; //在这把free掉的item 的slabs_clsid设为0
- DEBUG_REFCNT(it, 'F');
- slabs_free(it, ntotal, clsid);
- }
- /**
- * 检查item大小
- */
- bool item_size_ok(const size_t nkey, const int flags, const int nbytes) {
- char prefix[40];
- uint8_t nsuffix;
- size_t ntotal = item_make_header(nkey + 1, flags, nbytes,
- prefix, &nsuffix);
- if (settings.use_cas) {
- ntotal += sizeof(uint64_t);
- }
- return slabs_clsid(ntotal) != 0;
- }
- /**
- 把item插入相应的slabclass lru链表中而已
- */
- static void item_link_q(item *it) { /* item is the new head */
- item **head, **tail;
- assert(it->slabs_clsid < LARGEST_ID);
- assert((it->it_flags & ITEM_SLABBED) == 0);
- head = &heads[it->slabs_clsid];
- tail = &tails[it->slabs_clsid];
- assert(it != *head);
- assert((*head && *tail) || (*head == 0 && *tail == 0));
- it->prev = 0;
- it->next = *head;
- if (it->next) it->next->prev = it;
- *head = it;
- if (*tail == 0) *tail = it;
- sizes[it->slabs_clsid]++;
- return;
- }
- /**
- 把item从相应的slabclass lru链表中删掉而已,下面就是经典的删除链表逻辑代码了
- */
- static void item_unlink_q(item *it) {
- item **head, **tail;
- assert(it->slabs_clsid < LARGEST_ID);
- head = &heads[it->slabs_clsid];
- tail = &tails[it->slabs_clsid];
- if (*head == it) {
- assert(it->prev == 0);
- *head = it->next;
- }
- if (*tail == it) {
- assert(it->next == 0);
- *tail = it->prev;
- }
- assert(it->next != it);
- assert(it->prev != it);
- if (it->next) it->next->prev = it->prev;
- if (it->prev) it->prev->next = it->next;
- sizes[it->slabs_clsid]--;
- return;
- }
- /**
- 把item "link"起来,主要包括:
- 1)改变一些统计数据
- 2)把item加到哈希表
- 3)把item插入到相应的slabclass lru链表中
- */
- int do_item_link(item *it, const uint32_t hv) {
- MEMCACHED_ITEM_LINK(ITEM_key(it), it->nkey, it->nbytes);
- assert((it->it_flags & (ITEM_LINKED|ITEM_SLABBED)) == 0);
- mutex_lock(&cache_lock);
- it->it_flags |= ITEM_LINKED;
- it->time = current_time;
- STATS_LOCK();
- stats.curr_bytes += ITEM_ntotal(it);
- stats.curr_items += 1;
- stats.total_items += 1;
- STATS_UNLOCK();
- /* Allocate a new CAS ID on link. */
- ITEM_set_cas(it, (settings.use_cas) ? get_cas_id() : 0);
- assoc_insert(it, hv); //插入哈希表
- item_link_q(it); //加入LRU链表
- refcount_incr(&it->refcount);
- mutex_unlock(&cache_lock);
- return 1;
- }
- /**
- 就是和do_item_link反过来的一些操作
- */
- void do_item_unlink(item *it, const uint32_t hv) {
- MEMCACHED_ITEM_UNLINK(ITEM_key(it), it->nkey, it->nbytes);
- mutex_lock(&cache_lock);
- if ((it->it_flags & ITEM_LINKED) != 0) {
- it->it_flags &= ~ITEM_LINKED;
- STATS_LOCK();
- stats.curr_bytes -= ITEM_ntotal(it);
- stats.curr_items -= 1;
- STATS_UNLOCK();
- assoc_delete(ITEM_key(it), it->nkey, hv);
- item_unlink_q(it);
- do_item_remove(it);
- }
- mutex_unlock(&cache_lock);
- }
- /* FIXME: Is it necessary to keep this copy/pasted code? */
- void do_item_unlink_nolock(item *it, const uint32_t hv) {
- MEMCACHED_ITEM_UNLINK(ITEM_key(it), it->nkey, it->nbytes);
- if ((it->it_flags & ITEM_LINKED) != 0) {
- it->it_flags &= ~ITEM_LINKED;
- STATS_LOCK();
- stats.curr_bytes -= ITEM_ntotal(it);
- stats.curr_items -= 1;
- STATS_UNLOCK();
- assoc_delete(ITEM_key(it), it->nkey, hv);
- item_unlink_q(it);
- do_item_remove(it);
- }
- }
- /**
- 指向item的指针不用的时候都会调用此函数
- */
- void do_item_remove(item *it) {
- MEMCACHED_ITEM_REMOVE(ITEM_key(it), it->nkey, it->nbytes);
- assert((it->it_flags & ITEM_SLABBED) == 0);
- assert(it->refcount > 0);
- if (refcount_decr(&it->refcount) == 0) { //引用计数减1,当引用计数为0时,才真正把item free掉。
- item_free(it);
- }
- }
- /**
- 主要作用是重置在最近使用链表中的位置,更新最近使用时间
- */
- void do_item_update(item *it) {
- MEMCACHED_ITEM_UPDATE(ITEM_key(it), it->nkey, it->nbytes);
- if (it->time < current_time - ITEM_UPDATE_INTERVAL) {
- assert((it->it_flags & ITEM_SLABBED) == 0);
- mutex_lock(&cache_lock);
- if ((it->it_flags & ITEM_LINKED) != 0) {
- item_unlink_q(it);
- it->time = current_time;
- item_link_q(it);
- }
- mutex_unlock(&cache_lock);
- }
- }
- int do_item_replace(item *it, item *new_it, const uint32_t hv) {
- MEMCACHED_ITEM_REPLACE(ITEM_key(it), it->nkey, it->nbytes,
- ITEM_key(new_it), new_it->nkey, new_it->nbytes);
- assert((it->it_flags & ITEM_SLABBED) == 0);
- do_item_unlink(it, hv);
- return do_item_link(new_it, hv);
- }
- void item_stats_evictions(uint64_t *evicted) {
- int i;
- mutex_lock(&cache_lock);
- for (i = 0; i < LARGEST_ID; i++) {
- evicted[i] = itemstats[i].evicted;
- }
- mutex_unlock(&cache_lock);
- }
- void do_item_stats_totals(ADD_STAT add_stats, void *c) {
- itemstats_t totals;
- memset(&totals, 0, sizeof(itemstats_t));
- int i;
- for (i = 0; i < LARGEST_ID; i++) {
- totals.expired_unfetched += itemstats[i].expired_unfetched;
- totals.evicted_unfetched += itemstats[i].evicted_unfetched;
- totals.evicted += itemstats[i].evicted;
- totals.reclaimed += itemstats[i].reclaimed;
- totals.crawler_reclaimed += itemstats[i].crawler_reclaimed;
- }
- APPEND_STAT("expired_unfetched", "%llu",
- (unsigned long long)totals.expired_unfetched);
- APPEND_STAT("evicted_unfetched", "%llu",
- (unsigned long long)totals.evicted_unfetched);
- APPEND_STAT("evictions", "%llu",
- (unsigned long long)totals.evicted);
- APPEND_STAT("reclaimed", "%llu",
- (unsigned long long)totals.reclaimed);
- APPEND_STAT("crawler_reclaimed", "%llu",
- (unsigned long long)totals.crawler_reclaimed);
- }
- void do_item_stats(ADD_STAT add_stats, void *c) {
- int i;
- for (i = 0; i < LARGEST_ID; i++) {
- if (tails[i] != NULL) {
- const char *fmt = "items:%d:%s";
- char key_str[STAT_KEY_LEN];
- char val_str[STAT_VAL_LEN];
- int klen = 0, vlen = 0;
- if (tails[i] == NULL) {
- /* We removed all of the items in this slab class */
- continue;
- }
- APPEND_NUM_FMT_STAT(fmt, i, "number", "%u", sizes[i]);
- APPEND_NUM_FMT_STAT(fmt, i, "age", "%u", current_time - tails[i]->time);
- APPEND_NUM_FMT_STAT(fmt, i, "evicted",
- "%llu", (unsigned long long)itemstats[i].evicted);
- APPEND_NUM_FMT_STAT(fmt, i, "evicted_nonzero",
- "%llu", (unsigned long long)itemstats[i].evicted_nonzero);
- APPEND_NUM_FMT_STAT(fmt, i, "evicted_time",
- "%u", itemstats[i].evicted_time);
- APPEND_NUM_FMT_STAT(fmt, i, "outofmemory",
- "%llu", (unsigned long long)itemstats[i].outofmemory);
- APPEND_NUM_FMT_STAT(fmt, i, "tailrepairs",
- "%llu", (unsigned long long)itemstats[i].tailrepairs);
- APPEND_NUM_FMT_STAT(fmt, i, "reclaimed",
- "%llu", (unsigned long long)itemstats[i].reclaimed);
- APPEND_NUM_FMT_STAT(fmt, i, "expired_unfetched",
- "%llu", (unsigned long long)itemstats[i].expired_unfetched);
- APPEND_NUM_FMT_STAT(fmt, i, "evicted_unfetched",
- "%llu", (unsigned long long)itemstats[i].evicted_unfetched);
- APPEND_NUM_FMT_STAT(fmt, i, "crawler_reclaimed",
- "%llu", (unsigned long long)itemstats[i].crawler_reclaimed);
- }
- }
- /* getting here means both ascii and binary terminators fit */
- add_stats(NULL, 0, NULL, 0, c);
- }
- void do_item_stats_sizes(ADD_STAT add_stats, void *c) {
- /* max 1MB object, divided into 32 bytes size buckets */
- const int num_buckets = 32768;
- unsigned int *histogram = calloc(num_buckets, sizeof(int));
- if (histogram != NULL) {
- int i;
- /* build the histogram */
- for (i = 0; i < LARGEST_ID; i++) {
- item *iter = heads[i];
- while (iter) {
- int ntotal = ITEM_ntotal(iter);
- int bucket = ntotal / 32;
- if ((ntotal % 32) != 0) bucket++;
- if (bucket < num_buckets) histogram[bucket]++;
- iter = iter->next;
- }
- }
- /* write the buffer */
- for (i = 0; i < num_buckets; i++) {
- if (histogram[i] != 0) {
- char key[8];
- snprintf(key, sizeof(key), "%d", i * 32);
- APPEND_STAT(key, "%u", histogram[i]);
- }
- }
- free(histogram);
- }
- add_stats(NULL, 0, NULL, 0, c);
- }
- //读取item数据
- item *do_item_get(const char *key, const size_t nkey, const uint32_t hv) {
- //mutex_lock(&cache_lock);
- item *it = assoc_find(key, nkey, hv);
- if (it != NULL) {
- refcount_incr(&it->refcount);
- if (slab_rebalance_signal &&
- ((void *)it >= slab_rebal.slab_start && (void *)it < slab_rebal.slab_end)) {
- do_item_unlink_nolock(it, hv);
- do_item_remove(it);
- it = NULL;
- }
- }
- //mutex_unlock(&cache_lock);
- int was_found = 0;
- if (settings.verbose > 2) {
- int ii;
- if (it == NULL) {
- fprintf(stderr, "> NOT FOUND ");
- } else {
- fprintf(stderr, "> FOUND KEY ");
- was_found++;
- }
- for (ii = 0; ii < nkey; ++ii) {
- fprintf(stderr, "%c", key[ii]);
- }
- }
- if (it != NULL) {
- if (settings.oldest_live != 0 && settings.oldest_live <= current_time &&
- it->time <= settings.oldest_live) {
- do_item_unlink(it, hv);
- do_item_remove(it);
- it = NULL;
- if (was_found) {
- fprintf(stderr, " -nuked by flush");
- }
- } else if (it->exptime != 0 && it->exptime <= current_time) {
- do_item_unlink(it, hv);
- do_item_remove(it);
- it = NULL;
- if (was_found) {
- fprintf(stderr, " -nuked by expire");
- }
- } else {
- it->it_flags |= ITEM_FETCHED;
- DEBUG_REFCNT(it, '+');
- }
- }
- if (settings.verbose > 2)
- fprintf(stderr, "\n");
- return it;
- }
- item *do_item_touch(const char *key, size_t nkey, uint32_t exptime,
- const uint32_t hv) {
- item *it = do_item_get(key, nkey, hv);
- if (it != NULL) {
- it->exptime = exptime;
- }
- return it;
- }
- /* expires items that are more recent than the oldest_live setting. */
- void do_item_flush_expired(void) {
- int i;
- item *iter, *next;
- if (settings.oldest_live == 0)
- return;
- for (i = 0; i < LARGEST_ID; i++) {
- for (iter = heads[i]; iter != NULL; iter = next) {
- /* iter->time of 0 are magic objects. */
- if (iter->time != 0 && iter->time >= settings.oldest_live) {
- next = iter->next;
- if ((iter->it_flags & ITEM_SLABBED) == 0) {
- do_item_unlink_nolock(iter, hash(ITEM_key(iter), iter->nkey));
- }
- } else {
- /* We've hit the first old item. Continue to the next queue. */
- break;
- }
- }
- }
- }
- static void crawler_link_q(item *it) { /* item is the new tail */
- item **head, **tail;
- assert(it->slabs_clsid < LARGEST_ID);
- assert(it->it_flags == 1);
- assert(it->nbytes == 0);
- head = &heads[it->slabs_clsid];
- tail = &tails[it->slabs_clsid];
- assert(*tail != 0);
- assert(it != *tail);
- assert((*head && *tail) || (*head == 0 && *tail == 0));
- it->prev = *tail;
- it->next = 0;
- if (it->prev) {
- assert(it->prev->next == 0);
- it->prev->next = it;
- }
- *tail = it;
- if (*head == 0) *head = it;
- return;
- }
- static void crawler_unlink_q(item *it) {
- item **head, **tail;
- assert(it->slabs_clsid < LARGEST_ID);
- head = &heads[it->slabs_clsid];
- tail = &tails[it->slabs_clsid];
- if (*head == it) {
- assert(it->prev == 0);
- *head = it->next;
- }
- if (*tail == it) {
- assert(it->next == 0);
- *tail = it->prev;
- }
- assert(it->next != it);
- assert(it->prev != it);
- if (it->next) it->next->prev = it->prev;
- if (it->prev) it->prev->next = it->next;
- return;
- }
- static item *crawler_crawl_q(item *it) {
- item **head, **tail;
- assert(it->it_flags == 1);
- assert(it->nbytes == 0);
- assert(it->slabs_clsid < LARGEST_ID);
- head = &heads[it->slabs_clsid];
- tail = &tails[it->slabs_clsid];
- /* We've hit the head, pop off */
- if (it->prev == 0) {
- assert(*head == it);
- if (it->next) {
- *head = it->next;
- assert(it->next->prev == it);
- it->next->prev = 0;
- }
- return NULL; /* Done */
- }
- assert(it->prev != it);
- if (it->prev) {
- if (*head == it->prev) {
- *head = it;
- }
- if (*tail == it) {
- *tail = it->prev;
- }
- assert(it->next != it);
- if (it->next) {
- assert(it->prev->next == it);
- it->prev->next = it->next;
- it->next->prev = it->prev;
- } else {
- it->prev->next = 0;
- }
- it->next = it->prev;
- it->prev = it->next->prev;
- it->next->prev = it;
- if (it->prev) {
- it->prev->next = it;
- }
- }
- assert(it->next != it);
- assert(it->prev != it);
- return it->next; /* success */
- }
- /* I pulled this out to make the main thread clearer, but it reaches into the
- * main thread's values too much. Should rethink again.
- 上面这句注释作者是说,他把用爬虫处理过期的item的工作放到另一个专门的线程里去做
- 是为了让主线程干净一点,但是这线程的工作涉及到太多主线程的东西了,得重新想想..
- 这个函数的作用是“评估”一下这个item是否应该free掉。其实主要就是看下有没有过期啦~
- 当然用户设置的settings.oldest_live参数也加入到考虑中
- */
- static void item_crawler_evaluate(item *search, uint32_t hv, int i) {
- rel_time_t oldest_live = settings.oldest_live;
- if ((search->exptime != 0 && search->exptime < current_time)
- || (search->time <= oldest_live && oldest_live <= current_time)) {
- itemstats[i].crawler_reclaimed++;
- if (settings.verbose > 1) {
- int ii;
- char *key = ITEM_key(search);
- fprintf(stderr, "LRU crawler found an expired item (flags: %d, slab: %d): ",
- search->it_flags, search->slabs_clsid);
- for (ii = 0; ii < search->nkey; ++ii) {
- fprintf(stderr, "%c", key[ii]);
- }
- fprintf(stderr, "\n");
- }
- if ((search->it_flags & ITEM_FETCHED) == 0) {
- itemstats[i].expired_unfetched++;
- }
- do_item_unlink_nolock(search, hv);
- do_item_remove(search);
- assert(search->slabs_clsid == 0);
- } else {
- refcount_decr(&search->refcount);
- }
- }
- /**
- item爬虫线程入口,负责从lru链表中把过期的item free掉
- */
- static void *item_crawler_thread(void *arg) {
- int i;
- pthread_mutex_lock(&lru_crawler_lock);
- if (settings.verbose > 2)
- fprintf(stderr, "Starting LRU crawler background thread\n");
- while (do_run_lru_crawler_thread) {
- pthread_cond_wait(&lru_crawler_cond, &lru_crawler_lock);
- while (crawler_count) {
- item *search = NULL;
- void *hold_lock = NULL;
- for (i = 0; i < LARGEST_ID; i++) {
- if (crawlers[i].it_flags != 1) {
- continue;
- }
- pthread_mutex_lock(&cache_lock);
- search = crawler_crawl_q((item *)&crawlers[i]);
- if (search == NULL ||
- (crawlers[i].remaining && --crawlers[i].remaining < 1)) {
- if (settings.verbose > 2)
- fprintf(stderr, "Nothing left to crawl for %d\n", i);
- crawlers[i].it_flags = 0;
- crawler_count--;
- crawler_unlink_q((item *)&crawlers[i]);
- pthread_mutex_unlock(&cache_lock);
- continue;
- }
- uint32_t hv = hash(ITEM_key(search), search->nkey);
- /* Attempt to hash item lock the "search" item. If locked, no
- * other callers can incr the refcount
- */
- if ((hold_lock = item_trylock(hv)) == NULL) {
- pthread_mutex_unlock(&cache_lock);
- continue;
- }
- /* Now see if the item is refcount locked */
- if (refcount_incr(&search->refcount) != 2) {
- refcount_decr(&search->refcount);
- if (hold_lock)
- item_trylock_unlock(hold_lock);
- pthread_mutex_unlock(&cache_lock);
- continue;
- }
- item_crawler_evaluate(search, hv, i);
- if (hold_lock)
- item_trylock_unlock(hold_lock);
- pthread_mutex_unlock(&cache_lock);
- if (settings.lru_crawler_sleep)
- usleep(settings.lru_crawler_sleep);
- }
- }
- if (settings.verbose > 2)
- fprintf(stderr, "LRU crawler thread sleeping\n");
- STATS_LOCK();
- stats.lru_crawler_running = false;
- STATS_UNLOCK();
- }
- pthread_mutex_unlock(&lru_crawler_lock);
- if (settings.verbose > 2)
- fprintf(stderr, "LRU crawler thread stopping\n");
- return NULL;
- }
- static pthread_t item_crawler_tid;
- //停止item爬虫线程
- int stop_item_crawler_thread(void) {
- int ret;
- pthread_mutex_lock(&lru_crawler_lock);
- do_run_lru_crawler_thread = 0;
- pthread_cond_signal(&lru_crawler_cond);
- pthread_mutex_unlock(&lru_crawler_lock);
- if ((ret = pthread_join(item_crawler_tid, NULL)) != 0) {
- fprintf(stderr, "Failed to stop LRU crawler thread: %s\n", strerror(ret));
- return -1;
- }
- settings.lru_crawler = false;
- return 0;
- }
- /**
- 启动item 爬虫线程
- */
- int start_item_crawler_thread(void) {
- int ret;
- if (settings.lru_crawler)
- return -1;
- pthread_mutex_lock(&lru_crawler_lock);
- do_run_lru_crawler_thread = 1;
- settings.lru_crawler = true;
- if ((ret = pthread_create(&item_crawler_tid, NULL,
- item_crawler_thread, NULL)) != 0) {
- fprintf(stderr, "Can't create LRU crawler thread: %s\n",
- strerror(ret));
- pthread_mutex_unlock(&lru_crawler_lock);
- return -1;
- }
- pthread_mutex_unlock(&lru_crawler_lock);
- return 0;
- }
- enum crawler_result_type lru_crawler_crawl(char *slabs) {
- char *b = NULL;
- uint32_t sid = 0;
- uint8_t tocrawl[POWER_LARGEST];
- if (pthread_mutex_trylock(&lru_crawler_lock) != 0) {
- return CRAWLER_RUNNING;
- }
- pthread_mutex_lock(&cache_lock);
- if (strcmp(slabs, "all") == 0) {
- for (sid = 0; sid < LARGEST_ID; sid++) {
- tocrawl[sid] = 1;
- }
- } else {
- for (char *p = strtok_r(slabs, ",", &b);
- p != NULL;
- p = strtok_r(NULL, ",", &b)) {
- if (!safe_strtoul(p, &sid) || sid < POWER_SMALLEST
- || sid > POWER_LARGEST) {
- pthread_mutex_unlock(&cache_lock);
- pthread_mutex_unlock(&lru_crawler_lock);
- return CRAWLER_BADCLASS;
- }
- tocrawl[sid] = 1;
- }
- }
- for (sid = 0; sid < LARGEST_ID; sid++) {
- if (tocrawl[sid] != 0 && tails[sid] != NULL) {
- if (settings.verbose > 2)
- fprintf(stderr, "Kicking LRU crawler off for slab %d\n", sid);
- crawlers[sid].nbytes = 0;
- crawlers[sid].nkey = 0;
- crawlers[sid].it_flags = 1; /* For a crawler, this means enabled. */
- crawlers[sid].next = 0;
- crawlers[sid].prev = 0;
- crawlers[sid].time = 0;
- crawlers[sid].remaining = settings.lru_crawler_tocrawl;
- crawlers[sid].slabs_clsid = sid;
- crawler_link_q((item *)&crawlers[sid]);
- crawler_count++;
- }
- }
- pthread_mutex_unlock(&cache_lock);
- pthread_cond_signal(&lru_crawler_cond);
- STATS_LOCK();
- stats.lru_crawler_running = true;
- STATS_UNLOCK();
- pthread_mutex_unlock(&lru_crawler_lock);
- return CRAWLER_OK;
- }
- //初始化lru item爬虫线程
- int init_lru_crawler(void) {
- if (lru_crawler_initialized == 0) {
- if (pthread_cond_init(&lru_crawler_cond, NULL) != 0) {
- fprintf(stderr, "Can't initialize lru crawler condition\n");
- return -1;
- }
- pthread_mutex_init(&lru_crawler_lock, NULL);
- lru_crawler_initialized = 1;
- }
- return 0;
- }
Memcached源码分析之items.c的更多相关文章
- Memcached源码分析
作者:Calix,转载请注明出处:http://calixwu.com 最近研究了一下memcached的源码,在这里系统总结了一下笔记和理解,写了几 篇源码分析和大家分享,整个系列分为“结构篇”和“ ...
- Memcached源码分析之请求处理(状态机)
作者:Calix 一)上文 在上一篇线程模型的分析中,我们知道,worker线程和主线程都调用了同一个函数,conn_new进行事件监听,并返回conn结构体对象.最终有事件到达时,调用同一个函数ev ...
- Memcached源码分析之内存管理
先再说明一下,我本次分析的memcached版本是1.4.20,有些旧的版本关于内存管理的机制和数据结构与1.4.20有一定的差异(本文中会提到). 一)模型分析在开始解剖memcached关于内存管 ...
- memcached源码分析-----item过期失效处理以及LRU爬虫
memcached源码分析-----item过期失效处理以及LRU爬虫,memcached-----item 转载请注明出处:http://blog.csdn.net/luotuo44/article ...
- Memcached源码分析之线程模型
作者:Calix 一)模型分析 memcached到底是如何处理我们的网络连接的? memcached通过epoll(使用libevent,下面具体再讲)实现异步的服务器,但仍然使用多线程,主要有两种 ...
- Memcached源码分析之从SET命令开始说起
作者:Calix 如果直接把memcached的源码从main函数开始说,恐怕会有点头大,所以这里以一句经典的“SET”命令简单地开个头,算是回忆一下memcached的作用,后面的结构篇中关于命令解 ...
- memcached源码分析一-slab
Slab作为一种内存管理方案,其作用主要有以下2点: a) 避免频繁的内存分配释放造成的内存碎片 b) 减少内存分配操作产生的性能开销 Linux内核数据结构中也有slab的设计,Linux提供了一套 ...
- memcached源码分析三-libevent与命令解析
转载请注明出处https://www.cnblogs.com/yang-zd/p/11352833.html,谢谢合作! 前面已经分析了memcached中的slabs内存管理及缓存对象如何利用ite ...
- Memcached源码分析——process_command函数解析
以下为个人笔记 /** * process_command 在memcached中是用来处理用户发送的命令的, * 包括get set,add,delete,replace,stats,flush_a ...
随机推荐
- myEclipse JSP 调用 IDL8.2 配置
新安装了Envi5.0 IDL8.2,路径改动了,一些配置也要随之改动.现在总结一下,JSP调用IDL的配置. jar包配置,环境变量配置,dll配置,tomcat路径配置,tomcat运行选项配置, ...
- ubuntu server 11.10 mysql 自动备份脚本
1.下载最新的备份脚本(AutoMySQLBackup) 点这里下载 2.修改脚本配置部分 vi /root/automysqlbackup-2.5.1-01.sh USERNAME=root PA ...
- ListView使用的时候遇到的一些问题
昨天在做项目时,请求服务器的好友动态后,将好友动态和评论显示到界面上,用ListView显示,发现一进这个界面时,listView的适配器的getVIew()方法就会执行6次,后来发现原来是ListV ...
- Struts2 语法--验证方式:
第一种方式: 重写validation方法, ====验证action中所有的方法: 1. 在UserAction1里重写validation: @Override public void valid ...
- Efim and Strange Grade
Efim and Strange Grade time limit per test 1 second memory limit per test 256 megabytes input standa ...
- 数的计数(number)
数的计数(number) 题目描述 我们要求找出具有下列性质数的个数(包含输入的自然数n),先输入一个自然数n(n≤1000),然后对此自然数按照如下方法进行处理: (1)不作任何处理: (2)在它的 ...
- OpenGL------三维变换
我们生活在一个三维的世界——如果要观察一个物体,我们可以:1.从不同的位置去观察它.(视图变换)2.移动或者旋转它,当然了,如果它只是计算机里面的物体,我们还可以放大或缩小它.(模型变换)3.如果把物 ...
- android KeyEvent for dot "."
android连接了4x4的物理按键,需要映射".". 在linux驱动层注册了按键KEY_DOT, 写android的app的时候却没有对应的宏KEYCODE_DOT.只有KEY ...
- new/delete 和 new[]/delete[]
浅谈 C++ 中的 new/delete 和 new[]/delete[] 在 C++ 中,你也许经常使用 new 和 delete 来动态申请和释放内存,但你可曾想过以下问题呢? new 和 d ...
- JavaScript中call,apply,bind方法的总结
原文链接:http://www.cnblogs.com/pssp/p/5215621.html why?call,apply,bind干什么的?为什么要学这个? 一般用来指定this的环境,在没有学之 ...