2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

Time Limit: 4 Sec  Memory Limit: 64 MB
Submit: 85  Solved: 40
[Submit][Status][Discuss]

Description

    有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个蚂蚁群里有时只有一只出来觅食,有时是几只,有时干脆整个蚁群一起出来.这样一来,蚂蚁们出行觅食时的组队方案就有很多种.作为一头有数学头脑的奶牛,贝茜注意到整个蚂蚁群由T(1≤T≤1000)个家族组成,她将这些家族按1到T依次编号.编号为i的家族里有Ni(1≤Ni≤100)只蚂蚁.同一个家族里的蚂蚁可以认为是完全相同的.
    如果一共有S,S+1….,B(1≤S≤B≤A)只蚂蚁一起出去觅食,它们一共能组成多少种不同的队伍呢?注意:只要两支队伍中所包含某个家族的蚂蚁数不同,我们就认为这两支队伍不同.由于贝茜无法分辨出同一家族的蚂蚁,所以当两支队伍中所包含的所有家族的蚂蚁数都相同时,即使有某个家族换了几只蚂蚁出来,贝茜也会因为看不出不同而把它们认为是同一支队伍.    比如说,有个由3个家族组成的蚂蚁群里一共有5只蚂蚁,它们所属的家族分别为1,1,2,2,3.于是出去觅食时它们有以下几种组队方案:
  ·1只蚂蚁出去有三种组合:(1)(2)(3)
  ·2只蚂蚁出去有五种组合:(1,1)(1,2)(1,3)(2,2)(2,3)
  ·3只蚂蚁出去有五种组合:(1,1,2)(1,1,3)(1,2,2)(1,2,3)(2,2,3)
  ·4只蚂蚁出去有三种组合:(1,2,2,3)(1,1,2,2)(1,1,2,3)
  ·5只蚂蚁出去有一种组合:(1,1,2,2,3)
    你的任务就是根据给出的数据,计算蚂蚁们组队方案的总数.

Input

    第1行:4个用空格隔开的整数T,A,S,B.
    第2到A+1行:每行是一个正整数,为某只蚂蚁所在的家族的编号.

Output

 
    输出一个整数,表示当S到B(包括S和B)只蚂蚁出去觅食时,不同的组队方案数.
    注意:组合是无序的,也就是说组合1,2和组合2,1是同一种组队方式.最后的答案可能很大,你只需要输出答案的最后6位数字.注意不要输出前导0以及多余的空格.

Sample Input

3 5 2 3
1
2
2
1
3

Sample Output

10
样例说明
2只蚂蚁外出有5种组合,3只蚂蚁外出有5种组合.共有10种组合

HINT

Source

题解:首先显然是个DP,而且是个经典题,以蚂蚁数和最靠后的家族数为转移即可,可是这样子问题来了——这样子的数据规模(1000家族×100只蚂蚁=100000只,再加上×1000家族,这样子非得MLE不可),于是又被雷到了,直到看到了hzwer神犇的博客(OTLhzwer,传送门),发现实际上数组神马的可以滚动存储,而至于最后求某一段的和只需要弄个前缀和数组即可。。。OTLorz,感觉自己渣渣哒

(还有BZOJ双倍经验果断好评如潮!!!^_^)

 /**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ {/**************************************************************
Problem: 1630
User: HansBug
Language: Pascal
Result: Accepted
Time:184 ms
Memory:2588 kb
****************************************************************/} const p=;
var
i,j,k,l,m,n,r:longint;
a:array[..] of longint;
b,c:array[..,..] of longint;
begin
readln(n,m,l,r);
fillchar(a,sizeof(a),);
for i:= to m do
begin
readln(j);
inc(a[j]);
end;
b[,]:=;
for i:= to m do c[,i]:=;
for i:= to n do
for j:= to m do
begin
inc(b[i mod ,j],c[(i-) mod ,j]);
if (j-a[i]-)>= then dec(b[i mod ,j],c[(i-) mod ,j-a[i]-]);
b[i mod ,j]:=b[i mod ,j] mod p;
if j<> then
c[i mod ,j]:=(c[i mod ,j-]+b[i mod ,j]) mod p
else
c[i mod ,j]:=b[i mod ,j] mod p;
b[(i-) mod ,j]:=;
end;
writeln(((c[n mod ,r]-c[n mod ,l-]) mod p+p) mod p);
readln;
end.

1630/2023: [Usaco2005 Nov]Ant Counting 数蚂蚁的更多相关文章

  1. BZOJ 2023 [Usaco2005 Nov]Ant Counting 数蚂蚁:dp【前缀和优化】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2023 题意: 有n个家族,共m只蚂蚁(n <= 1000, m <= 1000 ...

  2. 【bzoj2023/1630】[Usaco2005 Nov]Ant Counting 数蚂蚁 dp

    题解: 水题 f[i][j] 前i种用了j个,前缀和优化就可以了

  3. bzoj 2023: [Usaco2005 Nov]Ant Counting 数蚂蚁【生成函数||dp】

    用生成函数套路推一推,推完老想NTT--实际上把这个多项式乘法看成dp然后前缀和优化一下即可 #include<iostream> #include<cstdio> using ...

  4. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

  5. bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁*&&bzoj1630[Usaco2007 Demo]Ant Counting*

    bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁&&bzoj1630[Usaco2007 Demo]Ant Counting 题意: t个族群,每个族群有 ...

  6. bzoj1630 / bzoj2023 [Usaco2005 Nov]Ant Counting 数蚂蚁

    Description     有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个 ...

  7. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁(dp)

    题意 题目描述的很清楚...  有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个 ...

  8. 【noi 2.6_9289】Ant Counting 数蚂蚁{Usaco2005 Nov}(DP)

    题意:有M个家族的蚂蚁,各Ni只(互相相同).问选出 l~r 只的不同方案数. 解法:很基础的一种DP,不要被"排列组合"所迷惑了啊~我之前接触过这个类型,可惜又忘了,一定要记住! ...

  9. BZOJ 1630/2023 Ant Counting 数蚂蚁

    DP. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> ...

随机推荐

  1. Oracle优化:千万级大表逻辑判断的累赘

    insert into pntmall_point_detail(PNTMALL_PNT_ID,PNTMALL_PNT_DT,PNTMALL_VALIDITY,PNTMALL_LASTUPDATEDT ...

  2. Java多线程基础——Lock类

    之前已经说道,JVM提供了synchronized关键字来实现对变量的同步访问以及用wait和notify来实现线程间通信.在jdk1.5以后,JAVA提供了Lock类来实现和synchronized ...

  3. 《JAVASCRIPT高级程序设计》第二章

    把javascript应用在网页中,需要涉及web的核心语言-html:如何让javascript既能与html共存,又不影响页面的显示效果,经过长时间的讨论.试错,最终的决定是为web增加统一的脚本 ...

  4. WPF开发进阶 - Fody/PropertyChanged(一)

    INotifyPropertyChanged 在WPF MVVM模式开发中,实现INotifyPropertyChanged的ViewModel是非常重要且常见的类: public class Mai ...

  5. gcc 简单编译流程

    注意:GCC在链接时优先使用动态链接库,只有当动态链接库不存在时才考虑使用静态链接库,可在编译时加上-static选项,强制使用静态链接库. gcc -static  此选项将禁止使用动态库,所以,编 ...

  6. gRPC中Any类型的使用(Java和NodeJs端)

    工作中要把原来Java服务端基于SpringMVC的服务改为使用gRPC直接调用.由于原Service的返回值为动态的Map类型,key值不确定,且value的类型不唯一,因此使用了protobuf ...

  7. 基于canvas的二维码邀请函生成插件

    去年是最忙碌的一年,实在没时间写博客了,看着互联网行业中一个又一个人的倒下,奉劝大家,健康要放在首位,保重身体.好了,言归正传,这是17年的第一篇博文,话说这天又是产品同学跑过来问我说:hi,lenn ...

  8. 修改WebView

    http://jwdev.cn/2015/09/28/use-javascript-to-delete-web-element/ 

  9. Python 最大公约数的欧几里得算法及Stein算法

    greatest common divisor(最大公约数) 1.欧几里得算法 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数. 其计算原理依赖于下面的定理: 两个整数的最大公约数等 ...

  10. simple-spa 一个简单的单页应用实例

    上两篇文章说过要写一个简单的单页应用例子的, 迟迟没有兑诺, 实在有愧 哈哈.这篇写给小白用户哈. 正好趁今天风和日丽,事情不多, 把从项目里的代码扣取了一下, 整理了一个简单的例子.因为我们生产项目 ...