【Python】Markov text generator马尔科夫文字生成器
遍历一段文字,统计每个字后面出现的字和其次数,当前一个字确定的时候,计算后一个字出现的百分比,用这个百分比作为文字生成器中后一个字出现的概率进行文字生成
from random import randint def makeDict(text):
#替换换行符和引号
text = text.replace('\n', ' ')
text = text.replace('\“', '')
text = text.replace('\”', '') punc = [',', '。', '?', ';', ':', '!']
for symbol in punc:
text = text.replace(symbol, ' '+symbol+' ') words = [word for word in text if word != ''] wordict = {}
for i in range(1, len(text)):
if words[i-1] not in wordict:
wordict[words[i-1]] = {}
if words[i] not in wordict[words[i-1]]:
wordict[words[i-1]][words[i]] = 0
wordict[words[i-1]][words[i]] += 1 return wordict def wordLen(wordict):
sum = 0
for key, value in wordict.items():
sum += value
return sum def retriveRandomWord(wordict):
"""
感觉这个函数计算每个单词的机率的思路太帅了
:param wordict:
:return:
"""
randindex = randint(1, wordLen(wordict))
for key, value in wordict.items():
randindex -= value
if randindex <= 0:
return key with open('test.txt','r') as f:
t = f.read()
text = str(t)
wordict = makeDict(text) length = 200
chain = ''
currentword = '想'
for i in range(0, length):
chain += currentword
currentword = retriveRandomWord(wordict[currentword]) with open("res.txt",'w') as file:
file.write(chain)
print(chain)
这是利用《百年孤独》第一章的文字作为来源,生成的结果
——————————————————————————————————————————————————————————————————————
想发明把记得连同意地 自训练他完全村子 ,
来 乌苏娜和茄子和魔 衣衫褴楼的事长月里的大镜 来了 , ,
他完全 三枚殖民宜今还了恼人烟的概念头的诚实际上校站在梅尔加德斯教他另做了耐心得意地向他大葫 , ,
这些男人以后 但实际上校站在雨季的一个小时刻使送给政府 , 想证实了暑 , 霍·阿·布恩蒂亚还了 , , 。 。
帐篷门口 , , “科学家都盖在宅子和各部把这种理论 他告诫说:他的回来
————————————————————————————————————————————————————————————————————————
想发出的时候起 他带者两块磁铁 他所谓 。 , ,
在街道的最新开辟的想起父亲手里忙得喘不走到吃午饭的唯一的仪器 涉过山岭 。 。
说:他知道中间里的反 “只大镜 乌苏娜失败之后等待在村边搭起来踱去了一个月份
《指指瘦得厌烦了耐心 , “科学家的仪 , 沿着遍布恩蒂亚紧张的居民地努力 ,
霍·布恩蒂亚都有力 的马上 人的唯一座农舍走出来将会有力 向观众出的吉卜赛人 苍的回了自言自然停辍 今后 “
参考资料:《Python网络数据采集》P106
【Python】Markov text generator马尔科夫文字生成器的更多相关文章
- 隐马尔科夫模型(Hidden Markov Models)
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...
- Chapter 4 马尔科夫链
4.1 引言 现在要研究的是这样一种过程: 表示在时刻的值(或者状态),想对一串连续时刻的值,比如:,, ... 建立一个概率模型. 最简单的模型就是:假设都是独立的随机变量,但是通常这种假设都是没什 ...
- 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)
上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...
- 隐马尔科夫模型python实现简单拼音输入法
在网上看到一篇关于隐马尔科夫模型的介绍,觉得简直不能再神奇,又在网上找到大神的一篇关于如何用隐马尔可夫模型实现中文拼音输入的博客,无奈大神没给可以运行的代码,只能纯手动网上找到了结巴分词的词库,根据此 ...
- Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫。 马尔可夫链,的原理attilax总结
Atitit 马尔可夫过程(Markov process) hmm隐马尔科夫. 马尔可夫链,的原理attilax总结 1. 马尔可夫过程1 1.1. 马尔科夫的应用 生成一篇"看起来像文章的 ...
- 隐马尔科夫模型,第三种问题解法,维比特算法(biterbi) algorithm python代码
上篇介绍了隐马尔科夫模型 本文给出关于问题3解决方法,并给出一个例子的python代码 回顾上文,问题3是什么, 下面给出,维比特算法(biterbi) algorithm 下面通过一个具体例子,来说 ...
- HMM隐马尔科夫算法(Hidden Markov Algorithm)初探
1. HMM背景 0x1:概率模型 - 用概率分布的方式抽象事物的规律 机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测. 概率模型(p ...
- 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)
(学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...
- 隐马尔科夫模型(hidden Markov Model)
万事开头难啊,刚开头确实不知道该怎么写才能比较有水平,这篇博客可能会比较长,隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法 2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型 ...
随机推荐
- 记录下关于SQL Server的东西
CTE之所以与其他表表达式不同,是因为它支持递归查询: 定义一个递归CTE,至少需要两个查询(或者更多),第一个查询称为定位点成员(anchor member),第二个查询称为递归成员(recursi ...
- 不用char*作为hash_map的key
尽量不用char*作为hash_map的key Posted on 2013-09-09 21:21 Springlie 阅读(83) 评论(0) 编辑 收藏 引子: 同事前几天用hash_map时发 ...
- GC算法精解(五分钟教你终极算法---分代搜集算法)
GC算法精解(五分钟教你终极算法---分代搜集算法) 引言 何为终极算法? 其实就是现在的JVM采用的算法,并非真正的终极.说不定若干年以后,还会有新的终极算法,而且几乎是一定会有,因为LZ相信高人们 ...
- 自己做个 Tag标签
这是效果图,下面是源码,时间有限,有时间再完善 http://files.cnblogs.com/wxwall/tag.zip
- php memcached+Mysql(主从)
/* index.php 程序入口,用来构造sql(如查询,更新) config.php 配置参数(memcache,mysql) init.php 封装memcached操作(memca ...
- java 逆波兰表达式
最近想把这破机 装成WIN7 想想还是算了 ... 反正用的机会也不多. 不过 发现了一些 想念的东西 从前的作业. 从前的记忆. package org.lmz; import java.util ...
- Sybase数据库截断和清空日志的方法
今天碰到一个奇怪的问题,当我打开应用程序的时候,开始的时候鼠标图标还显示程序正在启动,可是一会后,就没有任何反应了.重复了N多次都是这样,后来发现,每次打开应用程序的时候,任务管理器中都会相应的多一个 ...
- tensorflow与kubernetes/docker结合使用实践
tensorflow tensorflow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流 ...
- HTTP协议系列(2)--顺带离职的一些想法
一.聊聊离职感悟 来杭州也是将近3个月了,也迎来我的第一次辞职,有可能你会说我傻怎么不拿年终奖,也有可能你会不理解为什么3个月就要辞职:我只能说我是怀揣的梦想来的,我想着进一步的提升,想着成 ...
- XAF-BI.Dashboard模块概述 web/win
Dashboard模块介绍了在ASP.NET XAF 和 WinForms 应用程序中简单的集成 DevExpress Dashboard控件的方法. 其实不仅仅是控件,利用了现有的XAF数据模型,这 ...