[Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard

题意

给定一个 \(n\times n\) 的矩阵 \(A\), (\(n\) 为奇数) , 每次可以选 \(A\) 的一个 \(\frac {n+1}2 \times \frac {n+1} 2\) 的子矩阵并让这个子矩阵中的所有值取反.

进行若干次操作最大化整个矩阵中的元素值之和. 输出这个最大值.

\(n\le 33\), \(|A_{i,j}|\le 1000\)

题解

毒瘤wls活该被A

hzoi2017_jjm 当场AC, 大强辣!

这题是个结论题.

首先我们看他 \(n\le 33\) 必有高论. 实际上就是个结论优化暴力.

接着我们发现这个 \(\frac{n+1}2\) 非常奥妙重重. 设这个值为 \(m\). 它刚好卡在比一半稍多的位置, 中间的一行一列经常被翻转. 或者说, 只要 \((i,j)\) 被翻转, \((i,m)\) 和 \((m,j)\) 一定也被翻了. 如果 \((i,j)\) 没被翻但是 \((i,m)\) 被翻了, 那么肯定当前操作的子矩阵就被怼到一边去, 导致 \((i,j\pm m)\) 被翻. 不难发现 \((i,j),(i,m),(i,j+m)\) 三个位置在一次操作中如果有一个被翻, 那么必定有且仅有另一个被翻. 也就是说这三个位置的翻转状态的异或和不变且一直是 \(0\).

这个结论显然对于另一维也成立. \((i,j),(m,j),(i+m,j)\) 三个位置的翻转状态的异或和也是 \(0\).

这三个位置的翻转状态只要知道两个显然就能计算出第三个. 而这些关系都和 \((i,m)\) 以及 \((m,j)\) 有关. 我们考虑枚举这些用得很多的位置的翻转状态. (注意到我们对于第 \(m\) 行/列, 只需要枚举一半就可以推出另一半的状态.) 容易发现第 \(m\) 行和第 \(m\) 列的状态确定后, 剩余的位置被分为若干形如 \(\{(i,j),(i+m,j),(i,j+m),(i+m,j+m)\}\) 的组合, 组合之间互相不再有影响. 于是我们可以枚举其中一个位置的状态推出其余位置的状态, 然后两种情况取 \(\max\) 求和即为答案.

虽然我们只需要枚举一半, 但是总枚举量还是有 \(2^n=2^{33}\approx 8\times 10^9\). 再加上还需要 \(O(n^2)\) 验证显然非常不靠谱.

我们又惊奇地发现, 枚举行之后, \(\{(i,j),(i+m,j),(i,j+m),(i+m,j+m)\}\) 只和 \((i,m)\) 有关. 于是我们可以分别枚举 \((i,m)\) 的状态计算一遍和再取 \(\max\) 最后求和.

总时间复杂度 \(O(2^mn^2)\).

参考代码

#include <bits/stdc++.h>

const int MAXN=50;
const int k[2]={1,-1}; int n;
int a[MAXN][MAXN];
int d[MAXN][MAXN]; int main(){
scanf("%d",&n);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
scanf("%d",a[i]+j);
int m=(n+1)>>1;
int ans=INT_MIN;
for(int s=0;s<(1<<m);s++){
int sum=0;
for(int i=0;i<m;i++)
d[m-1][i]=((s>>i)&1)?1:-1;
for(int i=m;i<n;i++)
d[m-1][i]=d[m-1][i-m]*d[m-1][m-1];
for(int i=0;i<n;i++)
sum+=d[m-1][i]*a[m-1][i];
for(int i=0;i<m-1;i++){
int cur=INT_MIN;
for(int r=0;r<2;r++){
d[i][m-1]=k[r];
d[i+m][m-1]=d[i][m-1]*d[m-1][m-1];
int now=d[i][m-1]*a[i][m-1]+d[i+m][m-1]*a[i+m][m-1];
for(int j=0;j<m-1;j++){
int tmp=INT_MIN;
for(int r=0;r<2;r++){
d[i][j]=k[r];
d[i+m][j]=d[i][j]*d[m-1][j];
d[i][j+m]=d[i][j]*d[i][m-1];
d[i+m][j+m]=d[i+m][j]*d[i+m][m-1];
tmp=std::max(tmp,d[i][j]*a[i][j]+d[i+m][j]*a[i+m][j]+d[i][j+m]*a[i][j+m]+d[i+m][j+m]*a[i+m][j+m]);
}
now+=tmp;
}
cur=std::max(cur,now);
}
sum+=cur;
}
ans=std::max(ans,sum);
}
printf("%d\n",ans);
return 0;
}

[Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard的更多相关文章

  1. [2018HN省队集训D9T1] circle

    [2018HN省队集训D9T1] circle 题意 给定一个 \(n\) 个点的竞赛图并在其中钦定了 \(k\) 个点, 数据保证删去钦定的 \(k\) 个点后这个图没有环. 问在不删去钦定的这 \ ...

  2. [2018HN省队集训D8T1] 杀毒软件

    [2018HN省队集训D8T1] 杀毒软件 题意 给定一个 \(m\) 个01串的字典以及一个长度为 \(n\) 的 01? 序列. 对这个序列进行 \(q\) 次操作, 修改某个位置的字符情况以及查 ...

  3. [2018HN省队集训D8T3] 水果拼盘

    [2018HN省队集训D8T3] 水果拼盘 题意 给定 \(n\) 个集合, 每个集合包含 \([1,m]\) 中的一些整数, 在这些集合中随机选取 \(k\) 个集合, 求这 \(k\) 个集合的并 ...

  4. [2018HN省队集训D6T2] girls

    [2018HN省队集训D6T2] girls 题意 给定一张 \(n\) 个点 \(m\) 条边的无向图, 求选三个不同结点并使它们两两不邻接的所有方案的权值和 \(\bmod 2^{64}\) 的值 ...

  5. [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform

    [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform 题意 给定一个小写字母构成的字符串, 每个字符有一个非负权值. 输出所有满足权值和等于这个子串在所有本质 ...

  6. [2018HN省队集训D5T2] party

    [2018HN省队集训D5T2] party 题意 给定一棵 \(n\) 个点以 \(1\) 为根的有根树, 每个点有一个 \([1,m]\) 的权值. 有 \(q\) 个查询, 每次给定一个大小为 ...

  7. [2018HN省队集训D5T1] 沼泽地marshland

    [2018HN省队集训D5T1] 沼泽地marshland 题意 给定一张 \(n\times n\) 的棋盘, 对于位置 \((x,y)\), 若 \(x+y\) 为奇数则可能有一个正权值. 你可以 ...

  8. [2018HN省队集训D1T3] Or

    [2018HN省队集训D1T3] Or 题意 给定 \(n\) 和 \(k\), 求长度为 \(n\) 的满足下列条件的数列的数量模 \(998244353\) 的值: 所有值在 \([1,2^k)\ ...

  9. [2018HN省队集训D1T1] Tree

    [2018HN省队集训D1T1] Tree 题意 给定一棵带点权树, 要求支持下面三种操作: 1 root 将 root 设为根. 2 u v d 将以 \(\operatorname{LCA} (u ...

随机推荐

  1. 谈谈CSS的浮动问题

    浮动的工作原理 浮动元素脱离文档流,不占据空间.浮动元素碰到包含它的边框或者浮动元素的边框则停留. 浮动元素可能引起的问题 1.父元素的高度无法被撑开,影响与父级元素同级的元素 2.与浮动元素同级的非 ...

  2. [转]How to Use xp_dirtree to List All Files in a Folder

    本文转自:http://www.sqlservercentral.com/blogs/everyday-sql/2012/11/13/how-to-use-xp_dirtree-to-list-all ...

  3. activemq控制面板含义

    Name 消息队列的名称 Number Of Pending Messages 等待消费的消息数量,即未出队列的消息数量.可以理解为总接收数-总出队列数 (未持久化的话,重启acmq后会清零) Num ...

  4. vue常见知识点整理

    什么是 mvvm? MVVM 是 Model-View-ViewModel 的缩写.mvvm 是一种设计思想.Model 层代表数据模型,也可以在 Model 中定义数据修改和操作的业务逻辑:View ...

  5. 设计模式学习——代理模式(Proxy Pattern)

    放假啦~学生们要买车票回家了,有汽车票.火车票,等.但是,车站很远,又要考试,怎么办呢?找代理买啊,虽然要多花点钱,但是,说不定在搞活动,有折扣呢~ /// /// @file Selling_Tic ...

  6. sql按月统计数量和按月累加统计数量

    1.简单的,按月统计数量 SELECT CREATE_DATE, DATE_FORMAT(CREATE_DATE, '%Y-%m') AS month , COUNT(*) AS sum FROM p ...

  7. 理解CSS3 transform中的Matrix(矩阵)——张鑫旭

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=2427 一.哥,我被你 ...

  8. 纯web实现游记类手机端应用

    初衷 当初的一个学习框架项目,采用sui框架实现的一套手机端页面.今天清理github的时候重新整理了一下,因为设计的确实不错嘛,拿出来大家一起学习...哈哈 说明 采用sui框架 纯html/css ...

  9. HBuilder开发App Step1——环境搭建,HelloMUI 以及真机调试

    No1. 必须搭建java环境 只需要最基础的java环境,也就是cmd下可以运行java和javac即可, 具体教程请自行百度,都会有很详细的教程,这里不重点介绍. No2. 下载安装HBuilde ...

  10. Java volatile关键字解惑

    volatile特性 内存可见性:通俗来说就是,线程A对一个volatile变量的修改,对于其它线程来说是可见的,即线程每次获取volatile变量的值都是最新的. volatile的使用场景 通过关 ...