Uva1395 POJ3522 Slim Span (最小生成树)
Description Given an undirected weighted graph G, you should find one of spanning trees specified as follows. The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e). A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T. Figure 5: A graph G and the weights of the edges For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b). Figure 6: Examples of the spanning trees of G There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1. Your job is to write a program that computes the smallest slimness. Input The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices). Output For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters. Sample Input 4 5 Sample Output 1 Source |
题意:求一个图的生成树中,边最大权值和最小权值差的最小值。
思路:由于数据范围较少,可以选择暴力,生成不同的生成树,之后记录下最小值即可
AC代码:
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <queue>
#include <map>
#include <algorithm>
#include <iostream>
using namespace std;
#define inf 0x3f3f3f3f const int maxn=; int par[maxn]; struct node{
int x,y,w;
} edge[];; bool cmp(node a,node b){
return a.w<b.w;
} int init(int n){
for(int i=;i<=n;i++){
par[i]=i;
}
} int find(int x){
if(par[x]==x){
return x;
}else{
return par[x]=find(par[x]);
}
} int unite(int x,int y){
x=find(x);
y=find(y);
if(x==y){
return ;
}else{
par[x]=y;
return ;
}
} int main(){
int n,m;
while(scanf("%d%d",&n,&m)==&&!(!n&&!m)){
int mins=inf;
for(int i=;i<m;i++){
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].w);
}
sort(edge,edge+m,cmp); for(int i=;i<m;i++){
int cnt=;
init(n);
for(int j=i;j<m;j++){
if(unite(edge[j].x,edge[j].y)){
cnt++;
if(cnt==n-){
int tmp=edge[j].w-edge[i].w;
if(mins>tmp)mins=tmp;
break;
}
}
}
}
if(mins==inf)printf("-1\n");
else printf("%d\n",mins);
}
return ;
}
Uva1395 POJ3522 Slim Span (最小生成树)的更多相关文章
- 最小生成树POJ3522 Slim Span[kruskal]
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7594 Accepted: 4029 Descrip ...
- POJ-3522 Slim Span(最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 8633 Accepted: 4608 Descrip ...
- POJ3522 Slim Span
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7462 Accepted: 3959 Descrip ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- uva1395 - Slim Span(最小生成树)
先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...
- 【kruscal】【最小生成树】poj3522 Slim Span
求一个生成树,使得最大边权和最小边权之差最小.由于数据太小,暴力枚举下界,求出相应的上界.最后取min即可. #include<cstdio> #include<algorithm& ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- UVA 1395 Slim Span 最小生成树
题意: 给你一个图,让你求这个图中所有生成树中满足题目条件的,这个条件是生成树中最长边与最短边的差值最小. 思路: 根据最小瓶颈生成树的定义:在一个有权值的无向图中,求一个生成树最大边的权值尽量小.首 ...
- Slim Span (最小生成树)
题意 求生成树的最长边与最短边的差值的最小值 题解 最小生成树保证每一条边最小,就只要枚举最小边开始,跑最小生成树,最后一个值便是最大值 在枚举最小边同时维护差值最小,不断更新最小值. C++代码 / ...
随机推荐
- JavaScript部分兼容性函数
1.getElementsByClassName() function getElementsByClassName(node,classname){ if(node.getElementsByCla ...
- 番外篇 之 Win32Api
C# 调用系统API. 从自己的软件,来操作别人写好的软件. SendMessage 句柄 标识当前进程/控件的一个标识; 本课程所用到的常量信息: private const uint LB_FI ...
- 线程池ThreadPoolExecutor使用原理
本文来源于翁舒航的博客,点击即可跳转原文观看!!!(被转载或者拷贝走的内容可能缺失图片.视频等原文的内容) 若网站将链接屏蔽,可直接拷贝原文链接到地址栏跳转观看,原文链接:https://www.cn ...
- idea创建maven的web工程
然后一路点next 接下去添加tomcat 成功 控制台出现乱码的话 输入:-Dfile.encoding=UTF-8 控制台乱码解决
- @ConfigurationProperties与@value区别
@ConfigurationProperties与@value区别 @ConfigurationProperties @value 功能 批量注入配置文件中的属性 一个个指定 松散绑定 支持 不支 ...
- Form表单中Post与Get方法的区别
Form提供了两种数据传输的方式:get和post.虽然它们都是数据的提交方式,但是在实际传输时确有很大的不同,并且可能会对数据产生严重的影响. Form中的get和post方法,在数据传输过程中分别 ...
- js 中的console.log有什么作用
主要是方便你调式javascript用的.你可以看到你在页面中输出的内容. 相比alert他的优点是: 他能看到结构话的东西,如果是alert,淡出一个对象就是[object object],但是co ...
- css固定广告栏
<div style="position: fixed; left: 50%; top: 100px; margin-left: -621px;"> <div&g ...
- ASP.Net与JSP如何共享Session值
思路: ASP.NET中序列化Session以二进制数据保存到数据库,然后由JSP读取数据库中的二进制数据反序列化成Session对象,再强制转化成JAVA的Session对象登录的ASPX文件 ...
- windows设置VMware开机启动并开启虚拟机
1.建立开机脚本 新建start-vm.bat内容如下: "C:\Program Files (x86)\VMware\VMware Workstation\vmrun.exe" ...