% =========================================================================
% Test code for Super-Resolution Convolutional Neural Networks (SRCNN)
%
% Reference
% Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Learning a Deep Convolutional Network for Image Super-Resolution,
% in Proceedings of European Conference on Computer Vision (ECCV),
%
% Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Image Super-Resolution Using Deep Convolutional Networks,
% arXiv:1501.00092
%
% Chao Dong
% IE Department, The Chinese University of Hong Kong
% For any question, send email to ndc.forward@gmail.com
% ========================================================================= close all;
clear all; %% read ground truth image
im = imread('Set5\butterfly_GT.bmp');
%im = imread('Set14\zebra.bmp'); %% set parameters
up_scale = ;
model = 'model\9-5-5(ImageNet)\x3.mat';
% up_scale = ;
% model = 'model\9-3-5(ImageNet)\x3.mat';
% up_scale = ;
% model = 'model\9-1-5(91 images)\x3.mat';
% up_scale = ;
% model = 'model\9-5-5(ImageNet)\x2.mat';
% up_scale = ;
% model = 'model\9-5-5(ImageNet)\x4.mat'; %% work on illuminance only
if size(im,)>
im = rgb2ycbcr(im);
im = im(:, :, );
end
im_gnd = modcrop(im, up_scale); %保证图像被up_scale整除
im_gnd = single(im_gnd)/; %Single(单精度浮点型)变量存储为 IEEE 位( 个字节)浮点数值的形式,它的范围在负数的时候是从 -3.402823E38 到 -1.401298E-45,而在正数的时候是从 1.401298E-45 到 3.402823E38。 %% bicubic interpolation
im_l = imresize(im_gnd, /up_scale, 'bicubic'); %缩小3倍
im_b = imresize(im_l, up_scale, 'bicubic'); %又放大三倍 %% SRCNN
im_h = SRCNN(model, im_b); %用网络处理一下 %% remove border %去除没有用的边界
im_h = shave(uint8(im_h * ), [up_scale, up_scale]); %表示变量是无符号整数,范围是0到255.
im_gnd = shave(uint8(im_gnd * ), [up_scale, up_scale]);
im_b = shave(uint8(im_b * ), [up_scale, up_scale]); %% compute PSNR
psnr_bic = compute_psnr(im_gnd,im_b);
psnr_srcnn = compute_psnr(im_gnd,im_h); %% show results
fprintf('PSNR for Bicubic Interpolation: %f dB\n', psnr_bic);
fprintf('PSNR for SRCNN Reconstruction: %f dB\n', psnr_srcnn); %保存 图片
imwrite(im_h,'img_h.png');
imwrite(im_b,'img_b.png');
imwrite(im_gnd,'img_gnd.png'); figure, imshow(im_b); title('Bicubic Interpolation');
figure, imshow(im_h); title('SRCNN Reconstruction'); %imwrite(im_b, ['Bicubic Interpolation' '.bmp']);
%imwrite(im_h, ['SRCNN Reconstruction' '.bmp']);

SRCNN的核心算法:

function im_h = SRCNN(model, im_b)

%% load CNN model parameters
load(model);
[conv1_patchsize2,conv1_filters] = size(weights_conv1);
conv1_patchsize = sqrt(conv1_patchsize2);
[conv2_channels,conv2_patchsize2,conv2_filters] = size(weights_conv2);
conv2_patchsize = sqrt(conv2_patchsize2);
[conv3_channels,conv3_patchsize2] = size(weights_conv3);
conv3_patchsize = sqrt(conv3_patchsize2);
[hei, wid] = size(im_b); %% conv1
weights_conv1 = reshape(weights_conv1, conv1_patchsize, conv1_patchsize, conv1_filters);
conv1_data = zeros(hei, wid, conv1_filters);
for i = : conv1_filters
conv1_data(:,:,i) = imfilter(im_b, weights_conv1(:,:,i), 'same', 'replicate');
conv1_data(:,:,i) = max(conv1_data(:,:,i) + biases_conv1(i), );
end %% conv2
conv2_data = zeros(hei, wid, conv2_filters);
for i = : conv2_filters
for j = : conv2_channels
conv2_subfilter = reshape(weights_conv2(j,:,i), conv2_patchsize, conv2_patchsize);
conv2_data(:,:,i) = conv2_data(:,:,i) + imfilter(conv1_data(:,:,j), conv2_subfilter, 'same', 'replicate');
end
conv2_data(:,:,i) = max(conv2_data(:,:,i) + biases_conv2(i), );
end %% conv3
conv3_data = zeros(hei, wid);
for i = : conv3_channels
conv3_subfilter = reshape(weights_conv3(i,:), conv3_patchsize, conv3_patchsize);
conv3_data(:,:) = conv3_data(:,:) + imfilter(conv2_data(:,:,i), conv3_subfilter, 'same', 'replicate');
end %% SRCNN reconstruction
im_h = conv3_data(:,:) + biases_conv3;

图解里面变量和卷积

SRcnn:神经网络重建图片的开山之作的更多相关文章

  1. 这部分布式事务开山之作,凭啥第一天预售就拿下当当新书榜No.1?

    大家好,我是冰河~~ 今天,咱们就暂时不聊[精通高并发系列]了,今天插播一下分布式事务,为啥?因为冰河联合猫大人共同创作的分布式事务领域的开山之作--<深入理解分布式事务:原理与实战>一书 ...

  2. 【神经网络与深度学习】【计算机视觉】RCNN- 将CNN引入目标检测的开山之作

    转自:https://zhuanlan.zhihu.com/p/23006190?refer=xiaoleimlnote 前面一直在写传统机器学习.从本篇开始写一写 深度学习的内容. 可能需要一定的神 ...

  3. 吴裕雄 python神经网络 水果图片识别(3)

    import osimport kerasimport timeimport numpy as npimport tensorflow as tffrom random import shufflef ...

  4. 论文翻译——R-CNN(目标检测开山之作)

    R-CNN论文翻译 <Rich feature hierarchies for accurate object detection and semantic segmentation> 用 ...

  5. 深度学习(pytorch)-1.基于简单神经网络的图片自动分类

    这是pytorch官方的一个例子 官方教程地址:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-b ...

  6. 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)

    1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...

  7. 吴裕雄 python神经网络 花朵图片识别(10)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  8. 吴裕雄 python神经网络 花朵图片识别(9)

    import osimport numpy as npimport matplotlib.pyplot as pltfrom PIL import Image, ImageChopsfrom skim ...

  9. 吴裕雄 python神经网络 水果图片识别(4)

    # coding: utf-8 # In[1]:import osimport numpy as npfrom skimage import color, data, transform, io # ...

随机推荐

  1. Vue如何使用动态刷新Echarts组件

    这次给大家带来Vue如何使用动态刷新Echarts组件,Vue使用动态刷新Echarts组件的注意事项有哪些,下面就是实战案例,一起来看一下. 需求背景:dashboard作为目前企业中后台产品的“门 ...

  2. 使用JavaScript动态更改CSS样式

    在很多情况下,都需要对网页上元素的样式进行动态的修改.在JavaScript中提供几种方式动态的修改样式,下面将介绍方法的使用.效果.以及缺陷. 1.使用obj.className来修改样式表的类名. ...

  3. c#+arcAE对图层进行各种渲染操作

    转载:http://blog.sina.com.cn/s/blog_6023833e0100t5t0.html using System;using System.Collections.Generi ...

  4. webpack打包遇到过的问题

    1.打包后html文件打开是空白页面,报错信息如图所示: 解决办法:这里主要是将assetsPublicPath的路径从'/'改为'./'就好了. ('/'表示根目录:'./'表示当前目录) 2.运行 ...

  5. 最好最实用的二次开发教程 cms

    ◆二次开发 什么是二次开发? 二次开发,简单的说就是在现有的软件上进行定制修改,功能的扩展,然后达到自己想要的功能和效果,一 般来说都不会改变原有系统的内核. 为什么要二次开发? 随着信息化技术的不断 ...

  6. 一步一步pwn路由器之radare2使用实战

    前言 本文由 本人 首发于 先知安全技术社区: https://xianzhi.aliyun.com/forum/user/5274 前文讲了一些 radare2 的特性相关的操作方法.本文以一个 c ...

  7. java 内存分析之堆栈空间

    package Demo; public class Demo { public static void main(String[] args) { Demo demo = new Demo(); ; ...

  8. Linux安装Tomcat服务器发布项目教程

    前面小Alan跟大家聊了在Linux服务器上jdk运行环境的安装以及redis非关系型数据库的安装,今天继续跟大家聊聊Tomcat的安装,以及将我们的项目发布上去并成功的访问. 第一步:将tomcat ...

  9. 2017年秋季个人阅读计划 ---《掌握需求过程》第二版 pdf

    这学期我们学习是软件需求分析,为了扩展视野,我们老师要求精读一本书,我根据老师推荐的书籍中找到了一本,名字叫做<掌握需求过程>,我大概浏览了一下这本书,这本书论述了软件开发中的重要课题—如 ...

  10. C# 数据上传(自用笔记)

    #region 数据上传 [HttpPost] public ActionResult UploadFile() { HttpFileCollectionBase files = Request.Fi ...