TextBoxes 与 TextBoxes ++
TextBoxes
论文关键idea
本文和SegLink一样,也是在SSD的基础上进行改进的.相比SSD做了以下的改进:
- 修改了default box的apect ratio,分别为[1 2 3 5 7 10],目的是适应文本行长度比较长,宽度比较短的特性,也就是说现在的default box是长条形
- 提出了text-box层,修改classifier卷积核的大小为
,而SSD中卷积核的大小为
,这样做的目的是更适合文本行的检测,避免引入非文本噪声
- 提出了端到端的训练框架.在训练的时候,输入图像由单尺度变成了多尺度
- 增加文本识别来提高文本行检测的效果,印象当中,白翔老师好像在一个报告中说过,增加文本识别在可以提高文本行检测的准确率
知乎:https://zhuanlan.zhihu.com/p/43545190
TextBoxes ++
一、文本检测与传统目标检测的区别:
1.文本检测有比较大的长宽比
2.一般的convolutional filter 无法全部检测到
可能的解决方案:
1.长的卷积核
2.inception结构的卷积核
3.局部检测然后组合
二、textboxes 对SSD的改进
1.把ssd的defaultbox 的比例改成(1,2,3,5,7,10)的长矩形
2.看下面图你会发现黄色虚线与SSD的区别 把原先的作为分类的卷积核3*3改成了1*5,更适合文字这样的对象
长卷积核与长的defaultbox
3.从多尺度变换成单尺度(这里就奠定了textboxes系列的算法对尺度的依赖的严重性,亲测对不同尺度图片,要调整相应的不同尺度,效果才最好)
textboxes网络结构
SSD网络结构
三,我们来看看textbox++有哪些改进
https://arxiv.org/pdf/1801.02765.pdf 论文所在地
https://github.com/MhLiao/TextBoxes_plusplus 代码所在地
大家可以一起讨论,如下图片红线的 是不是应该少了一个y4。另外 cpu有些问题,建议大家用gpu跑
问题图片
textboxes++的多方向文本检测
那么有哪些改进呢?
- 首先就是对于文本框的表示方式发生了变化。论文中讨论了两种表示方式:分别是4个点坐标8个数字(x1,y1,x2,y2,x3,y3,x4,y4)和左上和右上两个点四个坐标外加四边形的高(x1,y1,x2,y2,h)。但论文推荐使用四个坐标的表示方式。
2.NMS采用了级联的方式提高效率,并且用了不同的计算overlap的方式。
通过1的改进提然提示我的有一个奇思妙想,就像人脸关键点识别一样。我给一行文字16点坐标或者32个点坐标 是不是可以使用更多形状的文字呢?比如环形的 比如波浪形的等等。
3.同时由于现在很多都是用IOU来评价当前的好坏。但是文字检测和物体检测的区别是看下图
abc具有用一样的iou那么这样的情况还是要通过crnn来一起判断当前的框是不是最好的!
知乎:https://zhuanlan.zhihu.com/p/34131821
https://zhuanlan.zhihu.com/p/33723456
感谢!仅为记录学习之用,侵删。
TextBoxes 与 TextBoxes ++的更多相关文章
- Restricting Input in HTML Textboxes to Numeric Values
Ok, here’s a fairly basic one – how to force a textbox to accept only numeric input. Somebody asked ...
- 字符识别OCR原理及应用实现
字符识别OCR原理及应用实现 文本是人类最重要的信息来源之一,自然场景中充满了形形色色的文字符号.光学字符识别(OCR)相信大家都不陌生,就是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过 ...
- 在Andoid开发中使用MVP模式来解耦,增加可测试性
by Jeff Angelini posted on 7/20/2011 2:35:00 PM 将应用程序UI的表现从Ui的逻辑中分离是一个好的想法.这种分离减少了代码耦合,代码更加干净, 甚至可以有 ...
- [转]Design Pattern Interview Questions - Part 1
Factory, Abstract factory, prototype pattern (B) What are design patterns? (A) Can you explain facto ...
- DataBinding examples
Databinding in Windows Forms demo (CSWinFormDataBinding) /************************************* Modu ...
- XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network
XiangBai--[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...
- (WPF) 基本题
What is WPF? WPF (Windows Presentation foundation) is a graphical subsystem for displaying user inte ...
- Programming Entity Framework 翻译(1)-目录
1. Introducing the ADO.NET Entity Framework ado.net entity framework 介绍 1 The Entity Relationship Mo ...
- Android项目结构 以及体系结构
学习Android平台的人一般对Android的平台的应该有点认识 其它的就不多讲了 Android项目一般由以下几个部分构成 以上是一个简单的Android项目结构目录图 1. src 主要是 源 ...
随机推荐
- j2ee model1模型完成分页逻辑的实现 详解!
在显示用户全部信息的页面,在显示全部数据的时候,长长的滚动条,像是没有边界的天空一样, 让用户查看数据很不方便. 于是, 我们要把这些数据分页显示, 就像office的word一样,每页显示一定数量的 ...
- linux用户管理中两个重要的“父子”配置文件
在Linux中主要通过用户配置文件来查看和修改用户信息,因此下面我们将介绍两个重要的用户配置文件,让你能够更好的hold住你的用户. 一:父文件/etc/passwd 1.查看配置文件/etc/pas ...
- dubbo+maven多模块项目单元测试
基本上就是记录各种报错的解决办法.基本上就是将散落在项目各个模块中的配置文件复制到测试模块中. 目录结构: ——src ——java ——test ——java ——DaoTest.java ——re ...
- GBDT(Gradient Boost Decision Tree)
原文:http://blog.csdn.net/aspirinvagrant/article/details/48415435 GBDT,全称Gradient Boosting Decision Tr ...
- DockerHub基于Github自己主动化构建
Docker Hub上的自己主动化构建 关于自己主动化构建 自己主动化构建是一个特殊的功能,它同意您在 Docker Hub 上使用构建集群,依据指定的 Dockerfile 或者 GitHub . ...
- Office WORD如何在图片上添加文字
如图所示,在图片格式中选择图片衬于文字下方即可,这样看起来感觉就像在图片上直接加字一样,没有生硬的感觉. 最终效果: Word如何在图片上添加文字Word如何在图片上添加文字Word如何在图片上添加文 ...
- Hibernate框架简介(二)基本使用增、删、改、查
一.Hibernate框架简介 Hibernate是一个优秀的Java持久化层解决方案,是当今主流的对象-关系映射(ORM,ObjectRelationalMapping)工具 1.1.理解持久化 瞬 ...
- Linux下启动eclipse报错
A Java Runtime Environment (JRE) or Java Development Kit (JDK) must be avail Java RunTime Environm ...
- GraphQL返回分页对象
private GraphQLOutputType testUserOutputType; private GraphQLOutputType pageType; private void initO ...
- OpenERP 的XML-RPC的轻度体验+many2many,one2many,many2one创建方式
来自:http://cn.openerp.cn/openerp_import_image_by_xmlrpc/ 每当夏秋之交,我们都有展会,展会完后,都有很多的新的潜在客户要添加,我们收了一大堆名片, ...