Hash索引

Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
      可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢?任何事物都是有两面性的,Hash 索引也一样,虽然 Hash 索引效率高,但是 Hash 索引本身由于其特殊性也带来了很多限制和弊端,主要有以下这些。

(1)Hash 索引仅仅能满足"=","IN"和"<=>"查询,不能使用范围查询。
由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。
(2)Hash 索引无法被用来避免数据的排序操作。
由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;
(3)Hash 索引不能利用部分索引键查询。
对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。
(4)Hash 索引在任何时候都不能避免表扫描。
前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。
(5)Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B-Tree索引高。
对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。

B-Tree索引

B-Tree 索引是 MySQL 数据库中使用最为频繁的索引类型,除了 Archive 存储引擎之外的其他所有的存储引擎都支持 B-Tree 索引。不仅仅在 MySQL 中是如此,实际上在其他的很多数据库管理系统中B-Tree 索引也同样是作为最主要的索引类型,这主要是因为 B-Tree 索引的存储结构在数据库的数据检索中有非常优异的表现。
一般来说, MySQL 中的 B-Tree 索引的物理文件大多都是以 Balance Tree 的结构来存储的,也就是所有实际需要的数据都存放于 Tree 的 Leaf Node ,而且到任何一个 Leaf Node 的最短路径的长度都是完全相同的,所以我们大家都称之为 B-Tree 索引当然,可能各种数据库(或 MySQL 的各种存储引擎)在存放自己的 B-Tree 索引的时候会对存储结构稍作改造。如 Innodb 存储引擎的 B-Tree 索引实际使用的存储结构实际上是 B+Tree ,也就是在 B-Tree 数据结构的基础上做了很小的改造,在每一个Leaf Node 上面出了存放索引键的相关信息之外,还存储了指向与该 Leaf Node 相邻的后一个 LeafNode 的指针信息,这主要是为了加快检索多个相邻 Leaf Node 的效率考虑。
在 Innodb 存储引擎中,存在两种不同形式的索引,一种是 Cluster 形式的主键索引( Primary Key ),另外一种则是和其他存储引擎(如 MyISAM 存储引擎)存放形式基本相同的普通 B-Tree 索引,这种索引在 Innodb 存储引擎中被称为 Secondary Index 。下面我们通过图示来针对这两种索引的存放形式做一个比较。

图示中左边为 Clustered 形式存放的 Primary Key ,右侧则为普通的 B-Tree 索引。两种 Root Node 和 Branch Nodes 方面都还是完全一样的。而 Leaf Nodes 就出现差异了。在 Prim中, Leaf Nodes 存放的是表的实际数据,不仅仅包括主键字段的数据,还包括其他字段的数据据以主键值有序的排列。而 Secondary Index 则和其他普通的 B-Tree 索引没有太大的差异,Leaf Nodes 出了存放索引键 的相关信息外,还存放了 Innodb 的主键值。

所以,在 Innodb 中如果通过主键来访问数据效率是非常高的,而如果是通过 Secondary Index 来访问数据的话, Innodb 首先通过 Secondary Index 的相关信息,通过相应的索引键检索到 Leaf Node之后,需要再通过 Leaf Node 中存放的主键值再通过主键索引来获取相应的数据行。MyISAM 存储引擎的主键索引和非主键索引差别很小,只不过是主键索引的索引键是一个唯一且非空 的键而已。而且 MyISAM 存储引擎的索引和 Innodb 的 Secondary Index 的存储结构也基本相同,主要的区别只是 MyISAM 存储引擎在 Leaf Nodes 上面出了存放索引键信息之外,再存放能直接定位到 MyISAM 数据文件中相应的数据行的信息(如 Row Number ),但并不会存放主键的键值信息。

我是天王盖地虎的分割线

参考:http://blog.sina.com.cn/s/blog_6776884e0100pko1.html

Hash索引与B-Tree索引的更多相关文章

  1. MYSQL之B+TREE索引原理

    1.什么是索引? 索引:加速查询的数据结构. 2.索引常见数据结构 顺序查找: 最基本的查询算法-复杂度O(n),大数据量此算法效率糟糕. 二叉树查找:(binary tree search): O( ...

  2. 索引,B+ tree,动态hash表

    数据库课索引部分的学习笔记. 教材: Database System: The Complete Book, Chapter 15 Database System Implementation, Ch ...

  3. Mysql的B+ Tree索引

    为什么要使用索引? 最简单的方式实现数据查询:全表扫描,即将整张表的数据全部或者分批次加载进内存,由于存储的最小单位是块或者页,它们是由多行数据组成,然后逐块逐块或者逐页逐页地查找,这样查找的速度非常 ...

  4. Mysql索引机制(B+Tree)

    1,索引谁实现的: 索引是搜索引擎去实现的,在建立表的时候都会指定,搜索引擎是一种插拔式的,根据自己的选择去决定使用哪一个. 2,索引的定义: 索引是为了加速对表中数据行的检索而创建的一种分散存储的( ...

  5. 论 数据库 B Tree 索引 在 固态硬盘 上 的 离散存储

    传统的做法 , 数据库 的 B Tree 索引 在 磁盘上是 顺序存储 的 , 这是考虑到 磁盘 机械读写 的 特性 . 实际上 , B Tree 是一个 树形结构 , 可以采用 链式 存储 , 就是 ...

  6. mysql B+Tree索引

    原文地址:http://blog.codinglabs.org/articles/theory-of-mysql-index.html 数据结构及算法基础 索引的本质 MySQL官方对索引的定义为:索 ...

  7. 索引原理 B tree

    数据库原理之-索引 背景介绍: 用数据库的时候经常有几个疑问: 1:为啥通过加索引就能提升数据的查询料率? 2:为啥加多了索引会导致增删改的效率变低? 3:为啥有的人能用好有的人用不好? 这些问题我们 ...

  8. Hash索引和B+树索引总结

    先说Hash索引 在理想的情况下,key非常分散,不存在Hash碰撞的话,采用Hash索引可以唯一得确定一个key的位置,并且这个位置上就只有一个key,所以查找时间复杂度是O(1),非常快,这是Ha ...

  9. ( 转 ) 数据库BTree索引、Hash索引、Bitmap位图索引的优缺点

    测试于:MySQL 5.5.25 当前测试的版本是Mysql 5.5.25只有BTree和Hash两种索引类型,默认为BTree.Oracle或其他类型数据库中会有Bitmap索引(位图索引),这里作 ...

  10. 为什么使用B+Tree索引?

    什么是索引? 索引是一种数据结构,具体表现在查找算法上. 索引目的 提高查询效率 [类比字典和借书] 如果要查"mysql"这个单词,我们肯定需要定位到m字母,然后从下往下找到y字 ...

随机推荐

  1. 哪种写法更好?<script></script> vs/or <script type=”text/javasript”></script>

    一直很奇怪 哪种写法更好<script type=“text/javascript”>…</script> or <script>…</script>? ...

  2. [leetcode tree]96. Unique Binary Search Trees

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  3. windows下整数溢出分析

    0x00前言 整数溢出就是往存储整数的内存单位存放的数据大于该内存单位所能存储的最大值,整数溢出有时候间接导致缓冲区溢出.如JPEG溢出漏洞(MS04-028). 0x01整数溢出分类 整数溢出可以分 ...

  4. voith项目配置服务程序

    项目需求: 1.程序可以最小化到任务栏 2.tpms标签和限速标签同时只能选择一个,并且要通过button确定修改 3.在程序中需要显示SequenceScanner1.0服务的运行状态 4.能够打开 ...

  5. Windows Phone background Audio 后台音频

    Windows Phone 后台音频的确不是什么新鲜的话题了,但发现目前在WP平台的音频播放应用多多少少会有一些瑕疵,所以在此给大家在此介绍下这个功能给有需要的朋友们. 首先介绍下我们的应用在后台播放 ...

  6. PHP常量定义之define与const对比

    简要归纳PHP中两个常量定义关键字的区别: 1.define是函数,const是语言结构,PHP编译时const速度快.2.define只能用在类外,const类内类外皆可.3.define定义的常量 ...

  7. 通过 ssh 登录到手机 Termux

    通过ssh登录到手机 Termux 测试环境 电脑: macOS Mojave 手机: Huawei Mate10Pro Termux是Android上的一个非常强大的终端模拟器. 强大之处在于支持使 ...

  8. COM/DCOM开发练习之进程内组件实例

    作者 : 卿笃军 题目说明: 仿照例题,在其基础上实现下面功能: 1)使用C++语言实现进程内组件,组件提供复数的加.减.乘.除等计算服务:client部分包含录入(实部和虚部分开录入)和查询部分. ...

  9. 报错:405 Method Not Allowed

    出现错误的原因是:静态文件不能通过post方式访问. 解决办法:改成用get方式访问.

  10. MVC实现多选下拉框

    借助Chosen Plugin可以实现多选下拉框. 选择多项: 设置选项数量,比如设置最多允许2个选项: 考虑到多选下拉<select multiple="multiple" ...