1. 前言

本文将基于flask 0.1版本(git checkout 8605cc3)来分析flask的实现,试图理清flask中的一些概念,加深读者对flask的理解,提高对flask的认识。从而,在使用flask过程中,能够减少困惑,胸有成竹,遇bug而不惊。

在试图理解flask的设计之前,你知道应该知道以下几个概念:

  • flask(web框架)是什么
  • WSGI是什么
  • jinja2是什么
  • Werkzeug是什么

本文将首先回答这些问题,然后再分析flask源码。

2. 知识准备

2.1 WSGI

下面这张图来自这里,通过这张图,读者对web框架所处的位置和WSGI协议能够有一个感性的认识。

WSGI

wikipedia上对WSGI的解释就比较通俗易懂。为了更好的理解WSGI,我们来看一个例子:

from eventlet import wsgi
import eventlet def hello_world(environ, start_response):
start_response('200 OK', [('Content-Type', 'text/plain')])
return ['Hello, World!\r\n'] wsgi.server(eventlet.listen(('', 8090)), hello_world)

我们定义了一个hello_world函数,这个函数接受两个参数。分别是environ和start_response,我们将这个hello_world传递给eventlet.wsgi.server以后, eventlet.wsgi.server在调用hello_world时,会自动传入environ和start_response这两个参数,并接受hello_world的返回值。而这,就是WSGI的作用。

也就是说,在python的世界里,通过WSGI约定了web服务器怎么调用web应用程序的代码,web应用程序需要符合什么样的规范,只要web应用程序和web服务器都遵守WSGI 协议,那么,web应用程序和web服务器就可以随意的组合。这也就是WSGI存在的原因。

WSGI是一种协议,这里,需要注意两个相近的概念:

  • uwsgi同WSGI一样是一种协议
  • 而uWSGI是实现了uwsgi和WSGI两种协议的web服务器

2.2 jinja2与Werkzeug

flask依赖jinja2和Werkzeug,为了完全理解flask,我们还需要简单介绍一下这两个依赖。

jinja2

Jinja2是一个功能齐全的模板引擎。它有完整的unicode支持,一个可选 的集成沙箱执行环境,被广泛使用。

jinja2的一个简单示例如下:

>>> from jinja2 import Template
>>> template = Template('Hello !')
>>> template.render(name='John Doe')
u'Hello John Doe!'

Werkzeug

Werkzeug是一个WSGI工具包,它可以作为web框架的底层库。

我发现Werkzeug的官方文档介绍特别好,下面这一段摘录自这里

Werkzeug是一个WSGI工具包。WSGI是一个web应用和服务器通信的协议,web应用可以通过WSGI一起工作。一个基本的”Hello World”WSGI应用看起来是这样的:

def application(environ, start_response):
start_response('200 OK', [('Content-Type', 'text/plain')])
return ['Hello World!']

上面这小段代码就是WSGI协议的约定,它有一个可调用的start_response 。environ包含了所有进来的信息。 start_response用来表明已经收到一个响应。 通过Werkzeug,我们可以不必直接处理请求或者响应这些底层的东西,它已经为我们封装好了这些。

请求数据需要environ对象,Werkzeug允许我们以一个轻松的方式访问数据。响应对象是一个WSGI应用,提供了更好的方法来创建响应。如下所示:

from werkzeug.wrappers import Response

 def application(environ, start_response):
response = Response('Hello World!', mimetype='text/plain')
return response(environ, start_response)

2.3 如何理解wsgi, Werkzeug, flask之间的关系

Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug,它只是工具包,其用于接收http请求并对请求进行预处理,然后触发Flask框架,开发人员基于Flask框架提供的功能对请求进行相应的处理,并返回给用户,如果要返回给用户复杂的内容时,需要借助jinja2模板来实现对模板的处理。将模板和数据进行渲染,将渲染后的字符串返回给用户浏览器。

2.4 Flask是什么,不是什么

Flask永远不会包含数据库层,也不会有表单库或是这个方面的其它东西。Flask本身只是Werkzeug和Jinja2的之间的桥梁,前者实现一个合适的WSGI应用,后者处理模板。当然,Flask也绑定了一些通用的标准库包,比如logging。除此之外其它所有一切都交给扩展来实现。

为什么呢?因为人们有不同的偏好和需求,Flask不可能把所有的需求都囊括在核心里。大多数web应用会需要一个模板引擎。然而不是每个应用都需要一个SQL数据库的。

Flask 的理念是为所有应用建立一个良好的基础,其余的一切都取决于你自己或者 扩展。

3. Flask源码分析

Flask的使用非常简单,官网的例子如下:

from flask import Flask
app = Flask(__name__) @app.route("/")
def hello():
return "Hello World!" if __name__ == "__main__":
app.run()

每当我们需要创建一个flask应用时,我们都会创建一个Flask对象:

app = Flask(__name__)

下面看一下Flask对象的__init__方法,如果不考虑jinja2相关,核心成员就下面几个:

class Flask:
def __init__(self, package_name): self.package_name = package_name
self.root_path = _get_package_path(self.package_name) self.view_functions = {}
self.error_handlers = {}
self.before_request_funcs = []
self.after_request_funcs = []
self.url_map = Map()

我们把目光聚集到后面几个成员,view_functions中保存了视图函数(处理用户请求的函数,如上面的hello()),error_handlers中保存了错误处理函数,before_request_funcs和after_request_funcs保存了请求的预处理函数和后处理函数。

self.url_map用以保存URI到视图函数的映射,即保存app.route()这个装饰器的信息,如下所示:

def route(...):
def decorator(f):
self.add_url_rule(rule, f.__name__, **options)
self.view_functions[f.__name__] = f
return f
return decorator

上面说到的是初始化部分,下面看一下执行部分,当我们执行app.run()时,调用堆栈如下:

app.run()
run_simple(host, port, self, **options)
__call__(self, environ, start_response)
wsgi_app(self, environ, start_response)

wsgi_app是flask核心:

def wsgi_app(self, environ, start_response):
with self.request_context(environ):
rv = self.preprocess_request()
if rv is None:
rv = self.dispatch_request()
response = self.make_response(rv)
response = self.process_response(response)
return response(environ, start_response)

可以看到,wsgi_app这个函数的作用就是先调用所有的预处理函数,然后分发请求,再调用所有后处理函数,最后返回response。

看一下dispatch_request函数的实现,因为,这里有flask的错误处理逻辑:

def dispatch_request(self):
try:
endpoint, values = self.match_request()
return self.view_functions[endpoint](**values)
except HTTPException, e:
handler = self.error_handlers.get(e.code)
if handler is None:
return e
return handler(e)
except Exception, e:
handler = self.error_handlers.get(500)
if self.debug or handler is None:
raise
return handler(e)

如果出现错误,则根据相应的error code,调用不同的错误处理函数。

上面这段简单的源码分析,就已经将Flask几个核心变量和核心函数串联起来了。其实,我们这里扣出来的几段代码,也就是Flask的核心代码。毕竟,Flask的0.1版本包含大量注释以后,也才六百行代码。

4. flask的魔法

如果读者打开flask.py文件,将看到我前面的源码分析几乎已经覆盖了所有重要的代码。但是,细心的读者会看到,在Flask.py文件的末尾处,有以下几行代码:

# context locals
_request_ctx_stack = LocalStack()
current_app = LocalProxy(lambda: _request_ctx_stack.top.app)
request = LocalProxy(lambda: _request_ctx_stack.top.request)
session = LocalProxy(lambda: _request_ctx_stack.top.session)
g = LocalProxy(lambda: _request_ctx_stack.top.g)

这是我们得以方便的使用flask开发的魔法,也是flask源码中的难点。在分析之前,我们先看一下它们的作用。

在flask的开发过程中,我们可以通过如下方式访问url中的参数:

from flask import request

@app.route('/')
def hello():
name = request.args.get('name', None)

看起来request像是一个全局变量,那么,一个全局变量为什么可以在一个多线程环境中随意使用呢,下面就随我来一探究竟吧!

先看一下全局变量_request_ctx_stack的定义:

_request_ctx_stack = LocalStack()

正如它LocalStack()的名字所暗示的那样,_request_ctx_stack是一个栈。显然,一个栈肯定会有push 、pop和top函数,如下所示:

class LocalStack(object):

    def __init__(self):
self._local = Local() def push(self, obj):
rv = getattr(self._local, 'stack', None)
if rv is None:
self._local.stack = rv = []
rv.append(obj)
return rv def pop(self):
stack = getattr(self._local, 'stack', None)
if stack is None:
return None
elif len(stack) == 1:
release_local(self._local)
return stack[-1]
else:
return stack.pop()

按照我们的理解,要实现一个栈,那么LocalStack类应该有一个成员变量,是一个list,然后通过 这个list来保存栈的元素。然而,LocalStack并没有一个类型是list的成员变量, LocalStack仅有一个成员变量self._local = Local()。

顺藤摸瓜,我们来到了Werkzeug的源码中,到达了Local类的定义处:

class Local(object):

    def __init__(self):
object.__setattr__(self, '__storage__', {})
object.__setattr__(self, '__ident_func__', get_ident) def __getattr__(self, name):
try:
return self.__storage__[self.__ident_func__()][name]
except KeyError:
raise AttributeError(name) def __setattr__(self, name, value):
ident = self.__ident_func__()
storage = self.__storage__
try:
storage[ident][name] = value
except KeyError:
storage[ident] = {name: value}

需要注意的是,Local类有两个成员变量,分别是__storage__和__ident_func__,其中,前者 是一个字典,后者是一个函数。这个函数的含义是,获取当前线程的id(或协程的id)。

此外,我们注意到,Local类自定义了__getattr__和__setattr__这两个方法,也就是说,我们在操作self.local.stack时, 会调用__setattr__和__getattr__方法。

_request_ctx_stack = LocalStack()
_request_ctx_stack.push(item)
# 注意,这里赋值的时候,会调用__setattr__方法
self._local.stack = rv = [] ==> __setattr__(self, name, value)

而__setattr的定义如下:

def __setattr__(self, name, value):
ident = self.__ident_func__()
storage = self.__storage__
try:
storage[ident][name] = value
except KeyError:
storage[ident] = {name: value}

在__setattr__中,通过__ident_func__获取到了一个key,然后进行赋值。自此,我们可以知道, LocalStack是一个全局字典,或者说是一个名字空间。这个名字空间是所有线程共享的。 当我们访问字典中的某个元素的时候,会通过__getattr__进行访问,__getattr__先通过线程id, 找当前这个线程的数据,然后进行访问。

字段的内容如下:

{'thread_id':{'stack':[]}}

{'thread_id1':{'stack':[_RequestContext()]},
'thread_id2':{'stack':[_RequestContext()]}}

最后,我们来看一下其他几个全局变量:

current_app = LocalProxy(lambda: _request_ctx_stack.top.app)
request = LocalProxy(lambda: _request_ctx_stack.top.request)
session = LocalProxy(lambda: _request_ctx_stack.top.session)
g = LocalProxy(lambda: _request_ctx_stack.top.g)

读者可以自行看一下LocalProxy的源码,LocalProxy仅仅是一个代理(可以想象设计模式中的代理模式)。

通过LocalStack和LocalProxy这样的Python魔法,每个线程访问当前请求中的数据(request, session)时, 都好像都在访问一个全局变量,但是,互相之间又互不影响。这就是Flask为我们提供的便利,也是我们 选择Flask的理由!

5. 总结

在这篇文章中,我们简单地介绍了WSGI, jinja2和Werkzeug,详细介绍了Flask在web开发中所处的位置和发挥的作用。最后,深入Flask的源码,了解了Flask的实现。

Flask源码剖析详解的更多相关文章

  1. NopCommerce源码架构详解--初识高性能的开源商城系统cms

    很多人都说通过阅读.学习大神们高质量的代码是提高自己技术能力最快的方式之一.我觉得通过阅读NopCommerce的源码,可以从中学习很多企业系统.软件开发的规范和一些新的技术.技巧,可以快速地提高我们 ...

  2. NopCommerce源码架构详解

    NopCommerce源码架构详解--初识高性能的开源商城系统cms   很多人都说通过阅读.学习大神们高质量的代码是提高自己技术能力最快的方式之一.我觉得通过阅读NopCommerce的源码,可以从 ...

  3. Nop--NopCommerce源码架构详解专题目录

    最近在研究外国优秀的ASP.NET mvc电子商务网站系统NopCommerce源码架构.这个系统无论是代码组织结构.思想及分层都值得我们学习.对于没有一定开发经验的人要完全搞懂这个源码还是有一定的难 ...

  4. Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览

    一.设计原理 1.Hadoop架构: 流水线(PipeLine) 2.Hadoop架构: HDFS中数据块的状态及其切换过程,GS与BGS 3.Hadoop架构: 关于Recovery (Lease ...

  5. Hadoop3.1.1源码Client详解 : 写入准备-RPC调用与流的建立

    该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 关于RPC(Remote Procedure Call),如果没有概念,可以参考一下RMI(Remot ...

  6. Hadoop3.1.1源码Client详解 : 入队前数据写入

    该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 紧接着上一篇: Hadoop3.1.1源码Client详解 : 写入准备-RPC调用与流的建立 先给出 ...

  7. Hadoop3.1.1源码Client详解 : Packet入队后消息系统运作之DataStreamer(Packet发送) : 主干

    该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 在上一章(Hadoop3.1.1源码Client详解 : 写入准备-RPC调用与流的建立) 我们提到, ...

  8. Hadoop3.1.1源码Client详解 : Packet入队后消息系统运作之ResponseProcessor(ACK接收)

    该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 紧接着上一篇文章: Hadoop3.1.1源码Client详解 : Packet入队后消息系统运作之D ...

  9. flask源码剖析系列(系列目录)

    flask源码剖析系列(系列目录) 01 flask源码剖析之werkzurg 了解wsgi 02 flask源码剖析之flask快速使用 03 flask源码剖析之threading.local和高 ...

随机推荐

  1. django (装饰器,母版继承,自定义,request对象,response对象)

     1. 装饰器  1.    def wrapper(fn):    def inner(*args,**kwargs):     执行被装饰函数之前的操作     ret = fn(*args,** ...

  2. Java 知识点(转)

    1.servlet执行流程 客户端发出http请求,web服务器将请求转发到servlet容器,servlet容器解析url并根据web.xml找到相对应的servlet,并将request.resp ...

  3. OpenACC 计算圆周率(简单版)

    ▶ 书上的计算圆周率的简单程序,主要是使用了自定义函数 #include <stdio.h> #include <stdlib.h> #include <math.h&g ...

  4. springMVC之Interceptor拦截器

    转自:https://blog.csdn.net/qq_25673113/article/details/79153547 Interceptor拦截器用于拦截Controller层接口,表现形式有点 ...

  5. 7.分工合作include:指定多个配置文件

    转自:https://wenku.baidu.com/view/84fa86ae360cba1aa911da02.html 比如让jack来单独开发一个action,在jack.xml中的配置文件为: ...

  6. Eclipse “cannot be resolved to a type”

    遇到这坑爹的问题,网上各种答案. 只有这个能解决我的问题,eclipse机制问题: Eclipse “cannot be resolved to a type”

  7. MySQL命令行学习

    1.登录mysql 本地:mysql -u root -p, 回车后输入密码; 也可以p后不加空格,直接加密码.回车就登录了 远程:mysql -hxx.xx.xx.xx -u -pxxx 2.查看数 ...

  8. 字典(dictionary) 的基本操作

    info = { ’stu1101‘ : ’xiaoming’, ‘stu1102 : xiahong‘, ’stu1103 : ‘xiaozhi', } 1. 字典的获取 info.get('stu ...

  9. 简单ssh建立 (paramiko)

    SSH为建立在应用层和传输层基础上的安全协议.SSH是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议.利用SSH协议可以有效防止远程管理过程中的信息泄露问题. import paramik ...

  10. Cookie的过期时间设置

    https://pan.baidu.com/s/1ibUQhLt6ZgVyhVM6mnrtHg 密码:9psc