Naive and Silly Muggles

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 61    Accepted Submission(s): 39

Problem Description
Three wizards are doing a experiment. To avoid from bothering, a special magic is set around them. The magic forms a circle, which covers those three wizards, in other words, all of them are inside or on the border of the circle. And due to save the magic power, circle's area should as smaller as it could be. Naive and silly "muggles"(who have no talents in magic) should absolutely not get into the circle, nor even on its border, or they will be in danger. Given the position of a muggle, is he safe, or in serious danger?
 
Input
The first line has a number T (T <= 10) , indicating the number of test cases. For each test case there are four lines. Three lines come each with two integers xi and yi (|xi, yi| <= 10), indicating the three wizards' positions. Then a single line with two numbers qx and qy (|qx, qy| <= 10), indicating the muggle's position.
 
Output
For test case X, output "Case #X: " first, then output "Danger" or "Safe".
 
Sample Input
3
0 0
2 0
1 2
1 -0.5
0 0
2 0
1 2
1 -0.6
0 0
3 0
1 1
1 -1.5
几何题:
考虑的事情有:
       (1)三点是否在一条直线上...求出前后坐标,得出圆心,和半径r;
       (2)区分锐角和钝角三角形....锐角三角形(最小的圆为其外接圆),钝角三角形以最长边为直径做圆为其最小圆面积...
 于是 有一点必须要注意,那就是求 外接圆的中心坐标(x,y)
代码wei:
 通俗算法
定义:设平面上的三点A(x1,y1),B(x2,y2),C(x3,y3),定义
S(A,B,C) = (x1-x3)*(y2-y3) - (y1-y3)*(x2-x3) 已知三角形的三个顶点为A(x1,y1),B(x2,y2),C(x3,y3),则该三角形的外心为:
S((x1*x1+y1*y1, y1), (x2*x2+y2*y2, y2), (x3*x3+y3*y3, y3))
x0 = -----------------------------------------------------------
*S(A,B,C) S((x1,x1*x1+y1*y1), (x2, x2*x2+y2*y2), (x3, x3*x3+y3*y3))
y0 = -----------------------------------------------------------
*S(A,B,C)

代码形式:

 //求外接圆的圆心
double S(double x1,double y1,double x2,double y2,double x3,double y3){
return ((x1-x3)*(y2-y3) - (y1-y3)*(x2-x3) );
} double getx(double x1,double y1,double x2,double y2,double x3,double y3){
return (S(x1*x1+y1*y1,y1, x2*x2+y2*y2, y2,x3*x3+y3*y3,y3)/(*S(x1,y1,x2,y2,x3,y3)) );
} double gety(double x1,double y1,double x2,double y2,double x3,double y3){
return (S(x1, x1*x1+y1*y1, x2, x2*x2+y2*y2, x3, x3*x3+y3*y3) / (*S(x1,y1,x2,y2,x3,y3)));
}
Sample Output
Case #1: Danger
Case #2: Safe
Case #3: Safe
 此题代码为:
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
bool isline(double *a,double *b,double *c)
{
if(fabs((b[]-a[])*(c[]-a[])-(c[]-a[])*(b[]-a[]))<1e-)
return ;
else
return ;
}
//求外接圆的圆心
double S(double x1,double y1,double x2,double y2,double x3,double y3){
return ((x1-x3)*(y2-y3) - (y1-y3)*(x2-x3) );
} double getx(double x1,double y1,double x2,double y2,double x3,double y3){
return (S(x1*x1+y1*y1,y1, x2*x2+y2*y2, y2,x3*x3+y3*y3,y3)/(*S(x1,y1,x2,y2,x3,y3)) );
} double gety(double x1,double y1,double x2,double y2,double x3,double y3){
return (S(x1, x1*x1+y1*y1, x2, x2*x2+y2*y2, x3, x3*x3+y3*y3) / (*S(x1,y1,x2,y2,x3,y3)));
}
//求两条边的夹角
bool iftrue(double *a,double *b,double *c )
{
return (a[]-b[])*(c[]-b[])+(a[]-b[])*(c[]-b[])>?:; //不是锐角时yes
}
//求两点间的距离
double distan(double *a,double *b)
{
return sqrt((a[]-b[])*(a[]-b[])+(a[]-b[])*(a[]-b[]))/2.0;
} int main()
{
int t,count,i;
double po[][],r,save[][],x,y;
scanf("%d",&t);
for(count=;count<=t;count++)
{
for(i=;i<;i++)
{
scanf("%lf%lf",&po[i][],&po[i][]);
if(i==||save[][]*save[][]+save[][]*save[][]<po[i][]*po[i][]+po[i][]*po[i][])
save[][]=po[i][],save[][]=po[i][];
if(i==||save[][]*save[][]+save[][]*save[][]>po[i][]*po[i][]+po[i][]*po[i][])
save[][]=po[i][],save[][]=po[i][];
}
if(isline(po[],po[],po[]))
{
r=sqrt((save[][]-save[][])*(save[][]-save[][])+(save[][]-save[][])*(save[][]-save[][]))/2.0;
x=(save[][]+save[][])/2.0;
y=(save[][]+save[][])/2.0;
}
else
{
bool judge[];
judge[]=iftrue(po[],po[],po[]);
judge[]=iftrue(po[],po[],po[]);
judge[]=iftrue(po[],po[],po[]);
if(judge[]||judge[]||judge[])
{
if(judge[])
{
x=(po[][]+po[][])/2.0;
y=(po[][]+po[][])/2.0;
r=distan(po[],po[]);
}
else if(judge[])
{
x=(po[][]+po[][])/2.0;
y=(po[][]+po[][])/2.0;
r=distan(po[],po[]);
}
else if(judge[])
{
x=(po[][]+po[][])/2.0;
y=(po[][]+po[][])/2.0;
r=distan(po[],po[]);
}
}
else
{
//当为锐角时,求其外接圆,否者不求
x=getx(po[][],po[][],po[][],po[][],po[][],po[][]);
y=gety(po[][],po[][],po[][],po[][],po[][],po[][]);
r=sqrt((po[][]-x)*(po[][]-x)+(po[][]-y)*(po[][]-y));
}
}
double temp=sqrt((po[][]-x)*(po[][]-x)+(po[][]-y)*(po[][]-y));
if(r>temp-1e-)
printf("Case #%d: Danger\n",count);
else
printf("Case #%d: Safe\n",count);
}
return ;
}

HDUOJ-------Naive and Silly Muggles的更多相关文章

  1. 计算几何 HDOJ 4720 Naive and Silly Muggles

    题目传送门 /* 题意:给三个点求它们的外接圆,判断一个点是否在园内 计算几何:我用重心当圆心竟然AC了,数据真水:) 正解以后补充,http://www.cnblogs.com/kuangbin/a ...

  2. Naive and Silly Muggles

    Problem Description Three wizards are doing a experiment. To avoid from bothering, a special magic i ...

  3. Naive and Silly Muggles (计算几何)

    Naive and Silly Muggles Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  4. HDU 4720 Naive and Silly Muggles (外切圆心)

    Naive and Silly Muggles Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...

  5. Naive and Silly Muggles hdu4720

    Naive and Silly Muggles Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  6. HDU 4720 Naive and Silly Muggles (简单计算几何)

    Naive and Silly Muggles Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  7. ACM学习历程—HDU4720 Naive and Silly Muggles(计算几何)

    Description Three wizards are doing a experiment. To avoid from bothering, a special magic is set ar ...

  8. HDU-4720 Naive and Silly Muggles 圆的外心

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4720 先两两点之间枚举,如果不能找的最小的圆,那么求外心即可.. //STATUS:C++_AC_0M ...

  9. HDU 4720 Naive and Silly Muggles 2013年四川省赛题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4720 题目大意:给你四个点,用前三个点绘制一个最小的圆,而这三个点必须在圆上或者在圆内,判断最一个点如 ...

  10. HDU 4720 Naive and Silly Muggles 平面几何

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4720 解题报告:给出一个三角形的三个顶点坐标,要求用一个最小的圆将这个三个点都包含在内,另外输入一个点 ...

随机推荐

  1. sqlalchemy简单示例

    1.初始化数据库database.py #!/usr/bin/env python # -*- coding: utf-8 -*- # Created by miaoshuijian on 2017/ ...

  2. 怎样在centos安装python-mysql?

    在python中使用mysql,须要安装mysql-python依赖包, 能够通过pip来安装: pip install MySQL-python 假设错误发生,须要先安装一个开发包: yum ins ...

  3. cookie.setPath()的用法

    正常的cookie只能在一个应用中共享,即一个cookie只能由创建它的应用获得.1.可在同一应用服务器内共享方法:设置cookie.setPath("/");    本机tomc ...

  4. SELinux安全系统基础

    一.SELinux简介 SELinux(Secure Enhanced Linux)安全增强的Linux是由美国国家安全局NSA针对计算机基础结构安全开发的一个全新的Linux安全策略机制.SELin ...

  5. [置顶] ios 无限循环翻页源码例子

    原创文章,转载请注明出处:http://blog.csdn.net/donny_zhang/article/details/9923053 demo功能:ios 无限循环翻页源码例子.iphone 6 ...

  6. 微信小程序:字体保持大小

    小程序和网页差不多,前台用wxml把内容摆好,然后用css调整样式.所以和web一样,必须要能够精确控制每一个元素的大小.在Web中,通过CSS基本达到了像素级的控制.但在小程序中,情况有所不同.下面 ...

  7. X86-64寄存器和栈帧

    简介 通用寄存器可用于传送和暂存数据,也可参与算术逻辑运算,并保存运算结果.除此之外,它们还各自具有一些特殊功能.通用寄存器的长度取决于机器字长,汇编语言程序员必须熟悉每个寄存器的一般用途和特殊用途, ...

  8. js数组对象深度复制

    var deepCopy = function(o) { if (o instanceof Array) { var n = []; for (var i = 0; i < o.length; ...

  9. LuaCURL

    LuaCURL:http://luacurl.luaforge.net/ curl大家应该都知道吧,在linux下被广泛使用,也有windows版本,网络上还有其win32版本的源代码.它是一个命令行 ...

  10. PS常用技能综合

    1.ps中怎么吧选中的一块区域覆盖到另一个区域中? 1.用PS中选取工具或套索工具--选好后用移动工具把你选取的区域移动到你要覆盖的地方2.或用图章工具中的仿制图章 2.如何将选中的区域新建为一个新图 ...