BZOJ5123 线段树的匹配(树形dp)
线段树的任意一棵子树都相当于节点数与该子树相同的线段树。于是假装在树形dp即可,记忆化搜索实现,有效状态数是logn级别的。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
ll n;
map<ll,ll> f[],g[];
void solve(ll n)
{
if (g[].find(n)!=g[].end()) return;
ll lson=n+>>,rson=n-lson;
solve(lson),solve(rson);
f[][n]=max(f[][lson],f[][lson])+max(f[][rson],f[][rson]);
f[][n]=max(f[][lson]+max(f[][rson],f[][rson]),f[][rson]+max(f[][lson],f[][lson]))+;
ll x=f[][lson]==f[][lson]?g[][lson]+g[][lson]:(f[][lson]>f[][lson]?g[][lson]:g[][lson]);
ll y=f[][rson]==f[][rson]?g[][rson]+g[][rson]:(f[][rson]>f[][rson]?g[][rson]:g[][rson]);
g[][n]=x*y%P;
if (f[][lson]+max(f[][rson],f[][rson])==f[][rson]+max(f[][lson],f[][lson]))
g[][n]=(g[][lson]*y+x*g[][rson])%P;
else if (f[][lson]+max(f[][rson],f[][rson])>f[][rson]+max(f[][lson],f[][lson])) g[][n]=g[][lson]*y%P;
else g[][n]=x*g[][rson]%P;
return;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5123.in","r",stdin);
freopen("bzoj5123.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
cin>>n;f[][]=,f[][]=-n,g[][]=,g[][]=;
solve(n);
if (f[][n]==f[][n]) cout<<f[][n]<<' '<<(g[][n]+g[][n])%P;
else if (f[][n]>f[][n]) cout<<f[][n]<<' '<<g[][n];
else cout<<f[][n]<<' '<<g[][n];
return ;
}
BZOJ5123 线段树的匹配(树形dp)的更多相关文章
- 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索
题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...
- BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP
题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...
- CF700E Cool Slogans SAM、线段树合并、树形DP
传送门 在最优的情况下,序列\(s_1,s_2,...,s_k\)中,\(s_i (i \in [2 , k])\)一定会是\(s_{i-1}\)的一个\(border\),即\(s_i\)同时是\( ...
- bzoj千题计划164:bzoj5123: 线段树的匹配
http://www.lydsy.com/JudgeOnline/upload/201712/prob12.pdf dp[len][0/1] 表示节点表示区间长度为len,节点选/不选的 最大匹配 s ...
- 【Codeforces720D】Slalom 线段树 + 扫描线 (优化DP)
D. Slalom time limit per test:2 seconds memory limit per test:256 megabytes input:standard input out ...
- [基本操作]线段树分治和动态dp
不知道为什么要把这两个没什么关系的算法放到一起写...可能是都很黑科技? 1.线段树分治 例题:bzoj4026 二分图 给你一个图,资瓷加一条边,删一条边,询问当前图是不是二分图 如果用 LCT 的 ...
- [HDU4867]Xor (线段树分治+类数位dp)
[HDU4867]Xor (线段树分治+类数位dp) 提供一种\((m+n) log a log m\)带有常数约\(\frac{1}{log n}\)的算法 处理询问,将后来加入的数算进序列中,则每 ...
- 1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP
1304F2 - Animal Observation (hard version) 线段树or单调队列 +DP 题意 用摄像机观察动物,有两个摄像机,一个可以放在奇数天,一个可以放在偶数天.摄像机在 ...
- bzoj5123 [Lydsy12月赛]线段树的匹配
题意: 线段树是这样一种数据结构:根节点表示区间 [1, n]:对于任意一个表示区间 [l, r] 的节点,若 l < r, 则取 mid = ⌊l+r/2⌋,该节点的左儿子为 [l, mid] ...
随机推荐
- Unity3d — — UGUI之Box Collider自适应大小
NGUI下给Sprite/image添加collider后能自适应大小,但是在UGUI下Collider是默认在(0,0)位置,size为0 因此写了个简单的脚本,效果如下(最后附代码) 1.如下图添 ...
- SQL注入原理&分类&危害&防御
SQL是什么? 结构化查询语句 SQL注入是什么? 是一种将SQL 语句插入或添加到用户输入的参数中,这些参数传递到后台服务器,加以解析并执行 造成注入的原因/原理? 1.对用户输入的参数没有进行严格 ...
- 如何在window服务器上搭建一个能代替ftp的传输工具
通常对于服务器上的文件管理和数据传输都是利用ftp来实现,但随着存储技术的发展,数据资产的存储规模和复杂程度不断提高,传统的ftp传输显得有笨重.今天给大家介绍一款能够取代ftp的在线文档管理软件—— ...
- shell解析ini格式文件
功能 本脚本实现了ini文件中的查询修改指定value 百度云连接地址 链接:https://pan.baidu.com/s/12_T5yST7Y3L1H4_MkVEcvA 密码:fo5p 解压后先看 ...
- mail邮件详解
基础命令学习目录首页 1.配置 vim /etc/mail.rc文件尾增加以下内容 set from=1968089885@qq.com smtp="smtp.qq.com"s ...
- 【quickhybrid】组件(自定义)API的实现
前言 前文在API规划时就已经有提到过组件API这个概念,本文将会介绍它的原理以及实现 理解组件API这个概念 quick.ui.xxx quick.page.xxx 在quick hybrid中,A ...
- JS页面出现Uncaught SyntaxError: Unexpected token < 错误
action中的查询方法的返回值应该为NONE;
- 课堂练习 psp表
项目计划总结表: 日期 编程 完善程序 测试程序 参考资料 日总结 3.20 18:00---19:30 1.5 3.21 9:30----10:00 10:00---10:30 ...
- SE Springer小组《Spring音乐播放器》可行性研究报告一、二
1 引言 1.1编写目的 <软件工程>课程,我们团队计划开发一个音乐播放器.本文档是基于网络上现有的音乐播放器的特点,团队计划实现的音乐播放器功能和团队人员的综合实力等情况,说明该软件开发 ...
- 剑指offer:用两个栈实现队列
题目描述: 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 思路: 可以用stack1来存所有入队的数.在出队操作中,首先将stack1中的元素清空,转移到sta ...