题目描述

一个由自然数组成的数列按下式定义:

对于i <= k:ai = bi

对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k

其中bj 和 cj (1<=j<=k)是给定的自然数。写一个程序,给定自然数m <= n, 计算am + am+1 + am+2 + ... + an, 并输出它除以给定自然数p的余数的值。

输入输出格式

输入格式:

输入文件spp.in由四行组成。

第一行是一个自然数k。

第二行包含k个自然数b1, b2,...,bk。

第三行包含k个自然数c1, c2,...,ck。

第四行包含三个自然数m, n, p。

输出格式:

输出文件spp.out仅包含一行:一个正整数,表示(am + am+1 + am+2 + ... + an) mod p的值。

输入输出样例

输入样例#1:

2
1 1
1 1
2 10 1000003
输出样例#1:

142

说明

对于100%的测试数据:

1<= k <=15

1 <= m <= n <= 1018

对于20%的测试数据:

1<= k <=15

1 <= m <= n <= 106

对于30%的测试数据:

k=1 1 <= m <= n <= 1018

对于所有测试数据:

0<= b1, b2,... bk, c1, c2,..., ck<=109

1 <= p <= 108

Solution:

  本题矩阵快速幂。

  求$\sum_\limits{i=m}^{i\leq n}a_i$,可以转化为前缀和相减$s_n-s_{m-1}$。

  那么我们需要快速求出$s_i$,我们发现$a_i$只与前$k$个$a$值有关,于是我们可以构建一个$(k+1)*(k+1)$的矩阵,存下前$k$个$a$值和当前的前缀和$s$。

  转移矩阵的构造就补$1$并依次填好$c$值就好了。

代码:

/*Code by 520 -- 10.11*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
struct matrix{
int r,c;ll a[N][N];
il void clr(){memset(a,,sizeof(a));}
}ans,tp;
ll n,m,k,mod,b[N],c[N],s[N]; il matrix mul(matrix x,matrix y){
matrix tp; tp.clr();
tp.r=x.r,tp.c=y.c;
For(i,,x.r-) For(j,,y.c-) For(k,,x.c-)
tp.a[i][j]=(tp.a[i][j]+x.a[i][k]*y.a[k][j]%mod)%mod;
return tp;
} int main(){
ios::sync_with_stdio();
cin>>k;
For(i,,k) cin>>b[i],s[i]=(s[i-]+b[i]);
For(i,,k) cin>>c[i];
cin>>n>>m>>mod; ll tot=;
if(m<=k) cout<<(s[m]-s[n-])%mod,exit();
ans.r=,ans.c=k+; tp.r=tp.c=k+; ans.clr(),tp.clr();
For(i,,k-) ans.a[][i]=b[i+]%mod; ans.a[][k]=s[k]%mod;
For(i,,k-) tp.a[i][i-]=,tp.a[i][k-]=tp.a[i][k]=c[k-i]%mod;
tp.a[][k-]=tp.a[][k]=c[k]%mod;tp.a[k][k]=;
if(n<=k) tot-=s[n-]%mod;
else {
n-=k+;
while(n){
if(n&) ans=mul(ans,tp);
n>>=,tp=mul(tp,tp);
}
tot-=ans.a[][k];
}
ans.r=,ans.c=k+; tp.r=tp.c=k+; ans.clr(),tp.clr();
For(i,,k-) ans.a[][i]=b[i+]%mod; ans.a[][k]=s[k]%mod;
For(i,,k-) tp.a[i][i-]=,tp.a[i][k-]=tp.a[i][k]=c[k-i]%mod;
tp.a[][k-]=tp.a[][k]=c[k]%mod;tp.a[k][k]=;
m-=k;
while(m){
if(m&) ans=mul(ans,tp);
m>>=,tp=mul(tp,tp);
}
tot=(tot+mod+ans.a[][k])%mod;
cout<<tot;
return ;
}
 
 
 

P2461 [SDOI2008]递归数列的更多相关文章

  1. P2461 [SDOI2008]递归数列 矩阵乘法+构造

    还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...

  2. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  3. BZOJ3231: [Sdoi2008]递归数列

    BZOJ3231: [Sdoi2008]递归数列 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + ...

  4. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  5. 开始玩矩阵了!先来一道入门题![SDOI2008]递归数列

    [SDOI2008]递归数列 题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + c ...

  6. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  7. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  8. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  9. [SDOI2008]递归数列

    嘟嘟嘟 裸的矩阵快速幂,构造一个\((k + 1) * (k + 1)\)的矩阵,把sum[n]也放到矩阵里面就行了. #include<cstdio> #include<iostr ...

随机推荐

  1. nodejs学习笔记(3)

    在看了Node8的特性后的总结,后续慢慢补充. 主要是针对一些编码规范,Node的v8引擎由于不同于其他语言的解析策略,因此需要注意一些特殊的方面. 1.try/catch使用对代码运行性能影响明显, ...

  2. svn图文教程-宋正河整理

    下载地址:http://download.csdn.net/download/songzhengdong82/4433476 在线浏览:http://wenku.baidu.com/view/07f1 ...

  3. Unity扩展编辑器五

    扩展系统自带组件Inspector ​ 可以在系统摄像机组建上添加一个按钮,这样就可以单独处理逻辑了 ​

  4. Unity优化方向——优化Unity游戏中的垃圾回收(译)

    介绍 当我们的游戏运行时,它使用内存来存储数据.当不再需要该数据时,存储该数据的内存将被释放,以便可以重用.垃圾是用来存储数据但不再使用的内存的术语.垃圾回收是该内存再次可用以进行重用的进程的名称. ...

  5. 【坚持】Selenium+Python学习之从读懂代码开始 DAY6

    2018/05/23 Python内置的@property装饰器 [@property](https://www.programiz.com/python-programming/property) ...

  6. CentOs6.5中安装和配置vsftp简明教程[转]

    CentOs6.5中安装和配置vsftp简明教程 林涛 发表于:2017-3-17 10:10 分类:WebServer 标签: 101次 一.vsftp安装篇 复制代码代码如下: # 安装vsftp ...

  7. 第31次Scrum会议(11/19)【欢迎来怼】

    一.小组信息 队名:欢迎来怼 小组成员 队长:田继平 成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/19 17:05~17:34,总计29min. 地 ...

  8. Code128

    条形码 条形码(barcode)是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符.常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案.条形 ...

  9. NetFPGA-SUME下reference_nic测试

    Reference_nic Reference_nic是NetFPGA-SUME中提供的一个参考Demo,本文主要介绍如何构建并在SUME上运行reference_nic. GIT源 git clon ...

  10. Java第二天——标识符命名规则、Java的知识、快捷键的使用、Scanner获取值的常用方法

    1.标识符命名规则 字母.下划线.数字.美元符号($)由这四个部分组成. 标识符=首字母+其他 首字母:字母.下划线.美元符号($) 其他:字母.下划线.数字.美元符号($) 注意: 1.首字母不能为 ...