P2461 [SDOI2008]递归数列
题目描述
一个由自然数组成的数列按下式定义:
对于i <= k:ai = bi
对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k
其中bj 和 cj (1<=j<=k)是给定的自然数。写一个程序,给定自然数m <= n, 计算am + am+1 + am+2 + ... + an, 并输出它除以给定自然数p的余数的值。
输入输出格式
输入格式:
输入文件spp.in由四行组成。
第一行是一个自然数k。
第二行包含k个自然数b1, b2,...,bk。
第三行包含k个自然数c1, c2,...,ck。
第四行包含三个自然数m, n, p。
输出格式:
输出文件spp.out仅包含一行:一个正整数,表示(am + am+1 + am+2 + ... + an) mod p的值。
输入输出样例
2
1 1
1 1
2 10 1000003
142
说明
对于100%的测试数据:
1<= k <=15
1 <= m <= n <= 1018
对于20%的测试数据:
1<= k <=15
1 <= m <= n <= 106
对于30%的测试数据:
k=1 1 <= m <= n <= 1018
对于所有测试数据:
0<= b1, b2,... bk, c1, c2,..., ck<=109
1 <= p <= 108
Solution:
本题矩阵快速幂。
求$\sum_\limits{i=m}^{i\leq n}a_i$,可以转化为前缀和相减$s_n-s_{m-1}$。
那么我们需要快速求出$s_i$,我们发现$a_i$只与前$k$个$a$值有关,于是我们可以构建一个$(k+1)*(k+1)$的矩阵,存下前$k$个$a$值和当前的前缀和$s$。
转移矩阵的构造就补$1$并依次填好$c$值就好了。
代码:
/*Code by 520 -- 10.11*/
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
using namespace std;
const int N=;
struct matrix{
int r,c;ll a[N][N];
il void clr(){memset(a,,sizeof(a));}
}ans,tp;
ll n,m,k,mod,b[N],c[N],s[N]; il matrix mul(matrix x,matrix y){
matrix tp; tp.clr();
tp.r=x.r,tp.c=y.c;
For(i,,x.r-) For(j,,y.c-) For(k,,x.c-)
tp.a[i][j]=(tp.a[i][j]+x.a[i][k]*y.a[k][j]%mod)%mod;
return tp;
} int main(){
ios::sync_with_stdio();
cin>>k;
For(i,,k) cin>>b[i],s[i]=(s[i-]+b[i]);
For(i,,k) cin>>c[i];
cin>>n>>m>>mod; ll tot=;
if(m<=k) cout<<(s[m]-s[n-])%mod,exit();
ans.r=,ans.c=k+; tp.r=tp.c=k+; ans.clr(),tp.clr();
For(i,,k-) ans.a[][i]=b[i+]%mod; ans.a[][k]=s[k]%mod;
For(i,,k-) tp.a[i][i-]=,tp.a[i][k-]=tp.a[i][k]=c[k-i]%mod;
tp.a[][k-]=tp.a[][k]=c[k]%mod;tp.a[k][k]=;
if(n<=k) tot-=s[n-]%mod;
else {
n-=k+;
while(n){
if(n&) ans=mul(ans,tp);
n>>=,tp=mul(tp,tp);
}
tot-=ans.a[][k];
}
ans.r=,ans.c=k+; tp.r=tp.c=k+; ans.clr(),tp.clr();
For(i,,k-) ans.a[][i]=b[i+]%mod; ans.a[][k]=s[k]%mod;
For(i,,k-) tp.a[i][i-]=,tp.a[i][k-]=tp.a[i][k]=c[k-i]%mod;
tp.a[][k-]=tp.a[][k]=c[k]%mod;tp.a[k][k]=;
m-=k;
while(m){
if(m&) ans=mul(ans,tp);
m>>=,tp=mul(tp,tp);
}
tot=(tot+mod+ans.a[][k])%mod;
cout<<tot;
return ;
}
P2461 [SDOI2008]递归数列的更多相关文章
- P2461 [SDOI2008]递归数列 矩阵乘法+构造
还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...
- BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )
矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...
- BZOJ3231: [Sdoi2008]递归数列
BZOJ3231: [Sdoi2008]递归数列 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + ...
- BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法
BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...
- 开始玩矩阵了!先来一道入门题![SDOI2008]递归数列
[SDOI2008]递归数列 题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + c ...
- [bzoj3231][SDOI2008]递归数列——矩阵乘法
题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂
题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- [luogu2461 SDOI2008] 递归数列 (矩阵乘法)
传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...
- [SDOI2008]递归数列
嘟嘟嘟 裸的矩阵快速幂,构造一个\((k + 1) * (k + 1)\)的矩阵,把sum[n]也放到矩阵里面就行了. #include<cstdio> #include<iostr ...
随机推荐
- SQL注入原理&分类&危害&防御
SQL是什么? 结构化查询语句 SQL注入是什么? 是一种将SQL 语句插入或添加到用户输入的参数中,这些参数传递到后台服务器,加以解析并执行 造成注入的原因/原理? 1.对用户输入的参数没有进行严格 ...
- 配置独立于系统的PYTHON环境
配置独立于系统的PYTHON环境 python 当前用户包 一种解决方案是在利用本机的python环境的基础上,将python的包安装在当前user的.local文件夹下 一共有两种方式来实现pip的 ...
- SQL Server复制
SQL Server复制的阶梯:级别1-SQL Server复制介绍 By Sebastian Meine, 2012/12/26 原文链接:http://www.sqlservercentral.c ...
- RBC:Echo设备2020年可为亚马逊贡献100亿美元收入
BI 中文站 12 月 22 日报道 加拿大皇家银行资本市场(RBC Capital Markets)分析师马克-马哈尼(Mark Mahaney)表示,亚马逊是首批将智能音箱引进主流受众的公司之一, ...
- exit命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/itcomputer/p/4157859.html 用途说明 exit命令用于退出当前shell,在shell脚本中可以 ...
- oozie-ext
安装oozie的时候需要ext的包支持,网站上找了一遍不是没有就是这个csdn下载还需要币,麻蛋...下面给出这个链接,在百度云上,如果失效了,在评论区或者给我留言,再发,一下是ext2.2.zip ...
- JS页面出现Uncaught SyntaxError: Unexpected token < 错误
action中的查询方法的返回值应该为NONE;
- SpringMVC 常用注释
@Controller Controller控制器是通过服务接口定义的提供访问应用程序的一种行为 @Repository Dao层的标志 @RequestMapping 标注控制层函数的访问路径 ...
- Mevan(转)
Missing artifact com.oracle:ojdbc6:jar:11.2.0.1.0问题解决 ojdbc包pom.xml出错 置顶 2017年08月23日 10:55:25 阅读数:96 ...
- Beta Scrum Day 7 — 听说
7#听说