【BZOJ3456】轩辕朗的城市规划 EGF+多项式求ln
我们构造$f(i)$和$g(i)$。
其中$f(x)$表示由$x$个节点构成的无向简单连通图的个数。
$g(x)$表示有$x$个节点构成的无向简单图(不要求连通)的个数。
显然,由$x$个节点构成的无向简单图最多能有$\binom{x}{2}$条边,那么$g(x)=2^{\binom{x}{2}}$。
然后我们构造$f(x)$和$g(x)$的$EGF$:
$F(x)=\sum_{i=0}^{\infty} f(i) \times \frac{x^i}{i!}$。
$G(x)=\sum_{i=0}^{\infty} g(i) \times \frac{x^i}{i!}\ =\sum_{i=0}^{\infty} 2^{\binom{x}{2}} \times \frac{x^i}{i!}$。
然后我们又不难发现,$G(x)=\sum_{i=0}^{\infty} \frac{F(x)^i}{i!}$。(这个式子可以这样理解:图中包含$1$个联通块的生成函数为$F(x)$,包含$2$个连通块的生成函数为$\frac{1}{2}F^2(x)$,包含$3$个连通块的生成函数为$\frac{1}{3!} F^3(x)$,以此类推)
考虑到$e^x$的泰勒展开式为$\sum_{i=0}^{\infty} \frac{x^i}{i!}$,则 $G(x)=e^{F(x)}$。
由于多项式$G(x)$我们已经求得,则$F(x)=ln(G(x))$。
则答案为$[x^n]F(n) \times n!$。
考虑到多项式求ln的时间复杂度为O(n long n),则该算法的时间复杂度为O(n log n)。
#include<bits/stdc++.h>
#define M (1<<19)
#define L long long
#define G 3
#define MOD 1004535809
using namespace std; L pow_mod(L x,L k){
L ans=;
while(k){
if(k&) ans=ans*x%MOD;
x=x*x%MOD; k>>=;
}
return ans;
} void change(L a[],int n){
for(int i=,j=;i<n-;i++){
if(i<j) swap(a[i],a[j]);
int k=n>>;
while(j>=k) j-=k,k>>=;
j+=k;
}
}
void NTT(L a[],int n,int on){
change(a,n);
for(int h=;h<=n;h<<=){
L wn=pow_mod(G,(MOD-)/h);
for(int j=;j<n;j+=h){
L w=;
for(int k=j;k<j+(h>>);k++){
L u=a[k],t=a[k+(h>>)]*w%MOD;
a[k]=(u+t)%MOD;
a[k+(h>>)]=(u-t+MOD)%MOD;
w=w*wn%MOD;
}
}
}
if(on==-){
L inv=pow_mod(n,MOD-);
for(int i=;i<n;i++) a[i]=a[i]*inv%MOD;
reverse(a+,a+n);
}
} void getinv(L a[],L b[],int n){
if(n==){b[]=pow_mod(a[],MOD-); return;}
static L c[M],d[M];
memset(c,,M<<); memset(d,,M<<);
getinv(a,c,n>>);
for(int i=;i<n;i++) d[i]=a[i];
NTT(d,n<<,); NTT(c,n<<,);
for(int i=;i<(n<<);i++) b[i]=(*c[i]-d[i]*c[i]%MOD*c[i]%MOD+MOD)%MOD;
NTT(b,n<<,-);
for(int i=;i<n;i++) b[i+n]=;
} void qiudao(L a[],L b[],int n){
for(int i=;i<n;i++) b[i-]=a[i]*i%MOD;
}
void jifen(L a[],L b[],int n){
for(int i=;i<n;i++) b[i+]=a[i]*pow_mod(i+,MOD-)%MOD;
} void getln(L a[],L b[],int n){
static L inva[M],pia[M];
memset(inva,,M<<); memset(pia,,M<<);
getinv(a,pia,n); qiudao(a,inva,n);
NTT(pia,n<<,); NTT(inva,n<<,);
for(int i=;i<(n<<);i++) pia[i]=pia[i]*inva[i]%MOD;
NTT(pia,n<<,-);
jifen(pia,b,n);
} L a[M]={},f[M]={};
L fac[M]={},invfac[M]={}; int main(){
fac[]=;
int n; scanf("%d",&n);
int nn=; while(nn<=n) nn<<=; for(int i=;i<nn;i++) fac[i]=fac[i-]*i%MOD;
invfac[nn-]=pow_mod(fac[nn-],MOD-);
for(int i=nn-;~i;i--) invfac[i]=invfac[i+]*(i+)%MOD; for(L i=;i<nn;i++) a[i]=pow_mod(,i*(i-)/)*invfac[i]%MOD;
getln(a,f,nn); printf("%lld\n",f[n]*fac[n]%MOD);
}
【BZOJ3456】轩辕朗的城市规划 EGF+多项式求ln的更多相关文章
- BZOJ3456 城市规划 【多项式求ln】
题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无 ...
- 【BZOJ】3456: 城市规划(多项式求ln)
题解 在我写过分治NTT,多项式求逆之后 我又一次写了多项式求ln 我们定义一个数列的指数型生成函数为 \(\sum_{i = 0}^{n} \frac{A_{i}}{i!} x^{i}\) 然后这个 ...
- 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...
- [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)
城市规划 时间限制:40s 空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...
- BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]
3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...
- bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...
- bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...
- 指数型生成函数 及 多项式求ln
指数型生成函数 我们知道普通型生成函数解决的是组合问题,而指数型生成函数解决的是排列问题 对于数列\(\{a_n\}\),我们定义其指数型生成函数为 \[G(x) = a_0 + a_1x + a_2 ...
- 多项式求ln,求exp,开方,快速幂 学习总结
按理说Po姐姐三月份来讲课的时候我就应该学了 但是当时觉得比较难加上自己比较懒,所以就QAQ了 现在不得不重新弄一遍了 首先说多项式求ln 设G(x)=lnF(x) 我们两边求导可以得到G'(x)=F ...
随机推荐
- 2018.10.04 NOIP模拟 排队(组合数学)
传送门 T2原题啊. 直接组合数学求出合法方案数,再除去一个(n+m)!(n+m)!(n+m)!: ans=0(n<m)ans=0(n<m)ans=0(n<m) ans=n+1−mn ...
- 2018.07.30 cogs2632. [HZOI 2016] 数列操作d(线段树)
传送门 线段树基本操作 区间加等差数列,维护区间和. 对于每个区间维护等差数列首项和公差,易证这两个东西都是可合并的,然后使用小学奥数的知识就可以切掉这题. 代码: #include<bits/ ...
- hdu-1133
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1133 思路:有m个人拿50元的纸币,n个人拿100元的纸币门票价格是50元,要求每个售票员遇到100元 ...
- Linux IPC 之信号量
信号量(也叫信号灯)是一种用于提供不同进程间或一个给定进程的不同线程间同步手段的原语. 信号量是进程/线程同步的一种方式,有时候我们需要保护一段代码,使它每次只能被一个执行进程/线程运行,这种工作就需 ...
- jsp调用java servlet
1.依赖jar servlet-api.jar 2.工程结构 3.java servlet实现类 package testServlet; import java.io.IOException; im ...
- gj6 深入python的set和dict
6.1 collections中的abc from collections.abc import Mapping, MutableMapping #dict属于mapping类型 a = {} pri ...
- Series转成list
直接list(series)就可以的 最佳的方式是将列表转换成Python中的科学计算包numpy包的array类型,再进行加减. 1 2 3 4 import numpy as np a = np. ...
- 14)settings.xml
1. User Level. ${user.home}/.m2/settings.xml 2. Global Level. ${maven.home}/conf/settings.xml <se ...
- Redis Cluster原理初步
目录 目录 1 1. 前言 1 2. 槽(slots) 1 3. 路由配置(node.conf) 1 4. 总slots数(cluster.h:16384) 2 5. key的路由 2 6. 将key ...
- 基于NLP和GAN的小说影视化
轮廓: https://tieba.baidu.com/p/1271120336 着色: