[BZOJ5109]大吉大利,晚上吃鸡!

题目大意:

一张\(n(n\le5\times10^4)\)个点\(m(m\le5\times10^4)\)条边的无向图,节点编号为\(1\)到\(n\),边权为正整数。给定\(S\)和\(T\),显然从\(S\)到\(T\)的最短路有一种或多种方案。

选择\(A,B\)两个点,约定\(A\)点和\(B\)点必须满足:

  1. 所有可能路径中,必定会经过\(A\)点和\(B\)点中的任意一点;
  2. 所有可能路径中,不存在一条路径同时经过\(A\)点和\(B\)点。

求满足上面两个条件的\(A,B\)点对有多少个,交换\(A,B\)的顺序算相同的方案。

思路:

首先用Dijkstra求出最短路网络,显然这是一个DAG。

在DAG上DP求出一个点到\(S/T\)的方案数,将它们相乘即为经过这个点的路径数,记作\(F(i)\)。我们同样也可以用bitset求出经过这个点的路径上可能经过的点,记作\(S(i)\)。

而题目所求的\(A\)和\(B\)相当于需要满足以下两个条件:

  1. \(F(A)+F(B)=F(T)\);
  2. \(A\notin F(B)\)且\(B\notin F(A)\)。

显然枚举\(A\)和\(B\)会超时,由于\(F(A)+F(B)=F(T)\)。我们可以开一个map<int,bitset>保存\(F(B)=F(T)-F(A)\)的可能的\(B\)。

此时我们只需要枚举\(A\),然后在map上查找对应的\(B\)即可。

源代码:

#include<cstdio>
#include<cctype>
#include<vector>
#include<bitset>
#include<climits>
#include<functional>
#include<tr1/unordered_map>
#include<ext/pb_ds/priority_queue.hpp>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int N=5e4+1,M=5e4;
struct Edge2 {
int u,v,w;
};
Edge2 edge[M];
struct Edge3 {
int to,w;
};
std::vector<Edge3> e3[N];
inline void add_edge(const int &u,const int &v,const int &w) {
e3[u].push_back((Edge3){v,w});
e3[v].push_back((Edge3){u,w});
}
bool vis[N];
int n,m,s,t,ind[N],ind2[N],outd[N];
int64 diss[N],dist[N],f[N],g[N],ans;
struct Vertex {
int id;
int64 d;
bool operator > (const Vertex &rhs) const {
return d>rhs.d;
}
};
inline void dijkstra(const int &s,int64 dis[]) {
static __gnu_pbds::priority_queue<Vertex,std::greater<Vertex> > q;
static __gnu_pbds::priority_queue<Vertex,std::greater<Vertex> >::point_iterator p[N];
for(register int i=1;i<=n;i++) {
p[i]=q.push((Vertex){i,dis[i]=i==s?0:LLONG_MAX});
}
while(!q.empty()&&q.top().d!=LLONG_MAX) {
const int x=q.top().id;
q.pop();
for(register unsigned i=0;i<e3[x].size();i++) {
const int &y=e3[x][i].to,&w=e3[x][i].w;
if(dis[x]+w<dis[y]) {
q.modify(p[y],(Vertex){y,dis[y]=dis[x]+w});
}
}
}
q.clear();
}
std::vector<int> e[N],e4[N];
inline void add_edge(const int &u,const int &v) {
e[u].push_back(v);
e4[v].push_back(u);
ind[v]++;
ind2[v]++;
outd[u]++;
}
std::queue<int> q;
std::bitset<N> b[N];
inline void kahn2() {
q.push(t);
g[t]=1;
while(!q.empty()) {
const int &x=q.front();
for(register unsigned i=0;i<e4[x].size();i++) {
const int &y=e4[x][i];
g[y]+=g[x];
if(!--outd[y]) q.push(y);
}
q.pop();
}
}
inline void kahn() {
q.push(s);
f[s]=1;
while(!q.empty()) {
const int &x=q.front();
b[x][x]=true;
for(register unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
b[y]|=b[x];
f[y]+=f[x];
if(!--ind[y]) q.push(y);
}
q.pop();
}
}
inline void kahn3() {
q.push(s);
while(!q.empty()) {
const int &x=q.front();
b[0][x]=true;
b[x]=b[0]^b[x];
for(register unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i];
if(!--ind2[y]) q.push(y);
}
q.pop();
}
}
std::tr1::unordered_map<int64,std::bitset<N> > map;
int main() {
n=getint(),m=getint(),s=getint(),t=getint();
for(register int i=0;i<m;i++) {
const int u=getint(),v=getint(),w=getint();
edge[i]=(Edge2){u,v,w};
add_edge(u,v,w);
}
dijkstra(s,diss);
if(diss[t]==LLONG_MAX) {
printf("%lld\n",(int64)n*(n-1)/2);
return 0;
}
dijkstra(t,dist);
for(register int i=1;i<=n;i++) e3[i].clear();
for(register int i=0;i<m;i++) {
int u=edge[i].u,v=edge[i].v,w=edge[i].w;
if(diss[u]>diss[v]) std::swap(u,v);
if(diss[u]+w+dist[v]==diss[t]) {
add_edge(u,v);
vis[u]=vis[v]=true;
}
}
int cnt=0;
for(register int i=1;i<=n;i++) cnt+=!vis[i];
kahn2();
kahn();
kahn3();
for(register int i=1;i<=n;i++) {
if(vis[i]) map[f[i]*g[i]][i]=true;
}
for(register int i=1;i<=n;i++) {
if(!vis[i]) continue;
if(map.count(f[t]-f[i]*g[i])) ans+=(map[f[t]-f[i]*g[i]]&b[i]).count();
if(f[i]*g[i]==f[t]) ans+=cnt;
}
printf("%lld\n",ans);
return 0;
}

[BZOJ5109]大吉大利,晚上吃鸡!的更多相关文章

  1. 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

    [BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...

  2. GMA Round 1 大吉大利,晚上吃鸡

    传送门 大吉大利,晚上吃鸡 新年走亲访友能干点啥呢,咱开黑吃鸡吧. 这里有32个人,每个人都可能想玩或者不想玩,这样子一共有$2^{32}$种可能.而要开黑当然得4人4人组一队(四人模式),所以说如果 ...

  3. BZOJ5109 CodePlus 2017大吉大利,晚上吃鸡!(最短路+拓扑排序+bitset)

    首先跑正反两遍dij求由起点/终点到某点的最短路条数,这样条件一就转化为f(S,A)*f(T,A)+f(S,B)*f(T,B)=f(S,T).同时建出最短路DAG,这样图中任何一条S到T的路径都是最短 ...

  4. bzoj5109: [CodePlus 2017]大吉大利,晚上吃鸡!

    Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏中,皮皮 和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快 ...

  5. [BZOJ5109/CodePlus2017]大吉大利,晚上吃鸡!

    Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏中,皮皮和毛毛最喜欢做的事情就是堵桥,每每有一个好时机都能收到不少的快递 ...

  6. 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!(dij+bitset)

    从S出发跑dij,从T出发跑dij,顺便最短路计数. 令$F(x)$为$S$到$T$最短路经过$x$的方案数,显然这个是可以用$S$到$x$的方案数乘$T$到$x$的方案数来得到. 然后第一个条件就变 ...

  7. 「CodePlus 2017 11 月赛」大吉大利,晚上吃鸡!

    n<=50000,m<=50000的图,给s和t,问有多少点对$(a,b)$满足 嗯. 不会. 首先最短路DAG造出来,然后两个条件转述一下:条件一,$N_a$表示从s到t经过a的路径,$ ...

  8. [Code+#1]大吉大利,晚上吃鸡!

    输入输出样例 输入样例#1: 7 7 1 7 1 2 2 2 4 2 4 6 2 6 7 2 1 3 2 3 5 4 5 7 2 输出样例#1: 6 输入样例#2: 5 5 1 4 1 2 1 1 3 ...

  9. luogu4061 大吉大利,晚上吃鸡!

    链接 最短路径\(dag\),一道好题. 题目大意:求一张图中满足下列要求的点对\((i,j)\)数量: 所有最短路径必定会经过 \(i\) 点和 \(j\) 点中的任意一点. 不存在一条最短路同时经 ...

随机推荐

  1. UNIX环境高级编程 第11章 线程

    使用C++调用pthread_cleanup_push( )时,下面的代码是无法编译通过的: pthread_cleanup_push(cleanup, "thread 1 first ha ...

  2. 关于getsockname()/getpeername()函数第一次被调用得到0.0.0.0结果的说明

    最近阅读UNIX网络编程第四章时,书本末尾介绍了两个函数getsockname()和getpeername(),可以用于获取服务器端和客户端的IP地址与端口,原本很简单的两个函数,过一眼即明白函数的用 ...

  3. jq 判断鼠标滚动上下

    $(document).on("mousewheel DOMMouseScroll", function (e) { var delta = (e.originalEvent.wh ...

  4. 【驱动】USB驱动实例·串口驱动·键盘驱动【转】

    转自:http://www.cnblogs.com/lcw/p/3159370.html Preface USB体系支持多种类型的设备. 在 Linux内核,所有的USB设备都使用 usb_drive ...

  5. 事件,使用.net自带委托EventHandler

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  6. Codechef AMXOR

    Problem Codechef Solution 我们可以按位进行考虑,如果一个 \(m_i\) 在某一位上为1,但 \(x_i\) 却取了0,那么我们就称它脱离了限制,更低位可以随便乱填.也就是说 ...

  7. Java集合之Collection与之子类回顾

    Java学习这么久,打算这几天回顾下java的基本知识点,首先是集合. 一.常用集合类关系图 Collection |___List 有序,可重复 |___ArrayList  底层数据结构是数组,增 ...

  8. 三、springboot热部署

    1.spring-boot-devtools 实现热部署 spring-boot-devtools 最重要的功能就是热部署.它会监听 classpath 下的文件变动,并且会立即重启应用. <d ...

  9. 高版本SQL备份在低版本SQL还原问题

    问题描述: 高版本SQL备份在低版本SQL还原问题(出现媒体簇的结构不正确)      分析原因: SQL版本兼容问题,SQL SERVER兼容级别是用作向下兼容用,高版本的SQL备份在低版本中不兼容 ...

  10. MySQL学习笔记:case when

    一.MySQL case when的三种用法: 1.case 字段 when, 字段的具体值: select a.*, case sex when '1' then '男' else '女' end ...