Sky Soldiers

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 559    Accepted Submission(s): 181

Problem Description
An airplane carried k soldiers with parachute is plan to let these soldiers jump off the plane along a straight air route. The landing point of these soldiers is undetermined because of various weather conditions. However, the statisticians
of the army can analysis the probability of landing in a certain place through landing history records. To make it simple, the statistician suggests that these sky soldiers will land on finite discrete points of a straight line.



This mission plans to place m provisions for the soldiers on the line for landing. These soldiers will be informed the direction of the nearest provision point by a special device after landing, and then walk to the point. The manager of this mission is asking
you for help: to determine m points for provisions so that the expected sum of walking distance should be minimized. You can put provisions on any point of the landing line.
 
Input
There are multiple test cases. For each case, the first line contains two integers k and m (1 ≤ k ≤ 1,000, 1 ≤ m ≤ 50), which represent the number of sky soldiers and the number of positions to place provisions separately.



The following k lines contain descriptions of landing parameters for the soldiers numbered from 1 to k. Each description consists of an integer L followed by L pairs of (x, p), which indicates that the probability of the soldier's landing on integer coordination
x is p. It is guaranteed that all the p values are positive real numbers, and the sum of p in a single line is exactly 1. The same x may appear more than once on the same line which you should simply add up all the probability p of the pairs with equal x.

The number of places on which all the soldiers could land is no more than 1000 and it can not be less than m.

The input ends with k=m=0.
 
Output
For each test case, output a line containing only one real number which indicates the minimum expected sum of distance these soldiers will move and should be rounded to two digits after the decimal point.
 
Sample Input
2 1
2 0 0.5 1 0.5
2 1 0.1 3 0.9
0 0
 
Sample Output
2.30
 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  5053 5052 5051 5050 5049 
 

题意:

n个伞兵。落地后。每一个伞兵可能会落在若干个点上点都在x轴上。落在每一个点都有一个概率。如今在x轴上建立m个基地,每一个伞兵走到近期的基地。确定基地建立的地点使得全部伞兵所走的路程总和的期望最小。

思路:

乍一看像期望dp。细致思考后能够发现这是一个区间DP。如果一个伞兵落在x点。那么他走的路程的期望为p1*|x1-x|+p2*|x2-x|....*pm*|xm-x|。所以我们能够把n个伞兵等价成一个伞兵。

然后它到一个点的概率为全部伞兵到那点的概率总和。那如今就能够写出状态了。dp[i][j]表示在前i个位置建j个基地。

该等效伞兵走的路程的最小期望。那么这题就类似poj 1160
Post Office
那题了。转移方程为dp[i][j]=dp[k][j-1]+cost[k+1][i]。k<i。

cost[i][j]表示在i,j之间建一个基地且该基地负责集合[i,j]上的伞兵。

所走距离的期望。如今重点怎么高速算cost[i][j]了。考虑我们在算cost[j][i]的时候。随着j的减小基地的最优位置cur要么前移要么不变。所以我们就能够在O(n^2)的时间复杂度下算出了。

具体见代码:

#include<algorithm>
#include<iostream>
#include<string.h>
#include<stdio.h>
#include<map>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=1010;
typedef long long ll;
struct node
{
int x;
double p;
} po[maxn];
map<int,double> mp;
map<int,double>::iterator it;
int n,m;
double dp[maxn][55],cost[maxn][maxn];
int main()
{
int k,i,j,l,x,cur,dis;
double p,lp,rp,cl,cr,tp; while(scanf("%d%d",&k,&m),k||m)
{
mp.clear();
for(i=0;i<k;i++)
{
scanf("%d",&l);
while(l--)
{
scanf("%d%lf",&x,&p);
mp[x]+=p;
}
}
n=0;
for(it=mp.begin();it!=mp.end();it++)
{
po[++n].x=it->first;
po[n].p=it->second;
}
for(i=n;i>=1;i--)
{
cost[i][i]=0;
cur=i;
rp=po[i].p;
lp=0;
cl=cr=0;
for(j=i-1;j>=1;j--)
{
dis=po[cur].x-po[j].x;
cl+=dis*po[j].p;//重心位置左边的期望和
lp+=po[j].p;//重心位置左边的概率和cr,rp为重心位置右边相应值
tp=cl+cr;//总期望
while(cur>1&&rp-lp<0)
{
dis=po[cur].x-po[cur-1].x;
cr+=dis*rp;
cl-=dis*lp;
cur--;
rp+=po[cur].p;
lp-=po[cur].p;
tp=cl+cr;
}
cost[j][i]=tp;
//printf("%d->%d tp %lf\n",j,i,tp);
}
}
for(i=0;i<=m;i++)
dp[i][i]=0;
for(i=1;i<=n;i++)
dp[i][0]=1e15;
for(j=1;j<=m;j++)
{
for(i=j;i<=n;i++)
{
tp=1e15;
for(k=j-1;k<i;k++)
tp=min(tp,dp[k][j-1]+cost[k+1][i]);
dp[i][j]=tp;
}
}
printf("%.2lf\n",dp[n][m]);
}
return 0;
}

hdu 4412 Sky Soldiers(区间DP)的更多相关文章

  1. hdu 4412 Sky Soldiers DP

    动态规划,主要是用单调性求区间的最小期望. 代码如下: #include<iostream> #include<stdio.h> #include<algorithm&g ...

  2. HDU 5115 Dire Wolf 区间dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5115 Dire Wolf Time Limit: 5000/5000 MS (Java/Others ...

  3. HDU 5693 D Game 区间dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5693 题解: 一种朴实的想法是枚举选择可以删除的两个或三个数(其他的大于三的数都能凑成2和3的和), ...

  4. hdu 4597 Play Game 区间dp

    Play Game Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=459 ...

  5. 【HDOJ】4412 Sky Soldiers

    1. 题目描述有$k$个伞兵跳伞,有$m$个汇点.当伞兵着陆后,需要走向离他最近的汇点.如何选择这$m$个结点,可以使得士兵最终行走的距离的期望最小.求这个最小的期望. 2. 基本思路假设已经选好了这 ...

  6. hdu 6049---Sdjpx Is Happy(区间DP+枚举)

    题目链接 Problem Description Sdjpx is a powful man,he controls a big country.There are n soldiers number ...

  7. hdu 5693 && LightOj 1422 区间DP

    hdu 5693 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5693 等差数列当划分细了后只用比较2个或者3个数就可以了,因为大于3的数都可以由2和3 ...

  8. hdu 4745 Two Rabbits 区间DP

    http://acm.hdu.edu.cn/showproblem.php?pid=4745 题意: 有两只兔子Tom Jerry, 他们在一个用石头围城的环形的路上跳, Tom只能顺时针跳,Jerr ...

  9. hdu 5181 numbers——思路+区间DP

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5181 题解:https://www.cnblogs.com/Miracevin/p/10960717.ht ...

随机推荐

  1. oracle 日期相减 转载

      转自 http://hi.baidu.com/juanjuan_66/blog/item/cf48554c9331fbe6d62afc6a.html oracle日期相减2012-02-10 12 ...

  2. Python的开源人脸识别库:离线识别率高达99.38%

    Python的开源人脸识别库:离线识别率高达99.38%   github源码:https://github.com/ageitgey/face_recognition#face-recognitio ...

  3. 如何在tomcat启动时自动加载一个类

    有时候在开发web应用的时候,需要tomcat启动后自动加载一个用户的类,执行一些初始化方法,如从数据库中加载业务字典到内存中,因此需要在tomcat启动时就自动加载一个类,或运行一个类的方法. 可以 ...

  4. 第二十四章 springboot注入servlet

    问:有了springMVC,为什么还要用servlet?有了servlet3的注解,为什么还要使用ServletRegistrationBean注入的方式? 使用场景:在有些场景下,比如我们要使用hy ...

  5. Best Time to Buy and Sell Stock II leetcode java

    题目: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  6. maven 将jar 下载到工程当前目录下

    在 pom.xml 的目录下,运行cmd命令 : call mvn -f pom.xml dependency:copy-dependencies 然后在同一目录下出现文件夹target,内容就是ja ...

  7. Bootstrap popover弹出框

    popover被挤压.遮挡的问题: 弹出框显示的时候如果贴近一个列的边沿,就会很窄或被遮挡,解决起来很简单,只需在初始化的时候添加一个container属性就可以了: $(function (){ $ ...

  8. matlab中find函数的使用说明

    matlab中如何统计一个矩阵M中零的个数 size(find(M==0),1) 原文:http://blog.sina.com.cn/s/blog_707b64550100rbh3.html fin ...

  9. OpenFace库(Tadas Baltrusaitis)中基于Haar Cascade Classifiers进行人脸检測的測试代码

    Tadas Baltrusaitis的OpenFace是一个开源的面部行为分析工具.它的源代码能够从 https://github.com/TadasBaltrusaitis/OpenFace 下载. ...

  10. Android 之 AndroidManifest.xml 详解(二)

    [10]<activity> Activity活动组件(即界面控制器组件)的声明标签,Android应用中的每一个Activity都必须在AndroidManifest.xml配置文件中声 ...