bzoj1874 [BeiJing2009 WinterCamp]取石子游戏
1874: [BeiJing2009 WinterCamp]取石子游戏
Time Limit: 5 Sec Memory Limit: 162 MB
Submit: 925 Solved: 381
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
7
6
9
3
2
1
2
Sample Output
1 1
Hint
样例中共有四堆石子,石子个数分别为7、6、9、3,每人每次可以从任何一堆石子中取出1个或者2个石子,小H有
必胜策略,事实上只要从第一堆石子中取一个石子即可。
Source
分析:比较简单的博弈论题. 预处理出sg函数值. 将每组式子的sg异或一下看是否等于0. 输出方案的话枚举是哪一堆石子取出多少个石子,如果取出后后手必输,就是答案.利用sg函数判断.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ;
int n,a[maxn],sg[maxn],ans,Tim,vis[maxn],b[maxn],m; void init()
{
for (int i = ; i <= ; i++)
{
Tim++;
for (int j = ; j <= m; j++)
{
if (i - b[j] >= )
vis[sg[i - b[j]]] = Tim;
}
for (int j = ; j <= ; j++)
if (vis[j] != Tim)
{
sg[i] = j;
break;
}
}
} int main()
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
scanf("%d",&a[i]);
scanf("%d",&m);
for (int i = ; i <= m; i++)
scanf("%d",&b[i]);
init();
for (int i = ; i <= n; i++)
{
if (i == )
ans = sg[a[i]];
else
ans ^= sg[a[i]];
}
if (ans == )
puts("NO");
else
{
puts("YES");
for (int i = ; i <= n; i++)
{
bool flag = false;
for (int j = ; j <= m; j++)
{
if (a[i] >= b[j] && (ans ^ sg[a[i]] ^ sg[a[i] - b[j]]) == )
{
printf("%d %d\n",i,b[j]);
flag = ;
break;
}
}
if (flag)
break;
}
} return ;
}
bzoj1874 [BeiJing2009 WinterCamp]取石子游戏的更多相关文章
- [bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论
取石子游戏 bzoj-1874 BeiJing2009 WinterCamp 题目大意:题目链接. 注释:略. 想法: 我们通过$SG$函数的定义来更新$SG$的转移. 如果是寻求第一步的话我们只需要 ...
- 【博弈论】【SG函数】【枚举】bzoj1874 [BeiJing2009 WinterCamp]取石子游戏
枚举第一步可能达到的状态,判断是否是必败态即可. #include<cstdio> #include<set> #include<cstring> using na ...
- 1874: [BeiJing2009 WinterCamp]取石子游戏 - BZOJ
Description小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问 ...
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]
小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)
Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 871 Solved: 365[Submit][Status][Discuss] Description ...
- BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏
Time Limit: 5 Sec Memory Limit: 162 MB Submit: 957 Solved: 394 [Submit][Status][Discuss] Description ...
- [BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】
题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...
- bzoj 1874: [BeiJing2009 WinterCamp]取石子游戏【博弈论】
先预处理出来sg值,然后先手必败状态就是sg[a[i]]的xor和为0(nim) 如果xor和不为0,那么一定有办法通过一步让xor和为0,具体就是选一个最大的sg[a[i]],把它去成其他sg值的x ...
- [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数
Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...
随机推荐
- Array.Copy 数据是克隆吗?
偶然看到 Array.Copy 方法的时候,想到,它是否是克隆,又是否是深克隆. 做了一个测试 public class abc { public string hello; } [TestMetho ...
- easyui panel异步获取后台数据在前台显示
我在使用easyui的时候,想做一个向下图所示的效果,这个panel的样式已经做好了,想从后台异步获取json数据,然后填入到文本框中,不知道哪位大神能给点指导?万分感谢! 放入表单中,使用form对 ...
- 配置Tomcat使用HTTP/2
转自: https://zhuanlan.zhihu.com/p/21349186 前情提要: Tomcat高效响应的秘密(一) Sendfile与Gzip Tomcat高效响应的秘密(二) keep ...
- JAVA第一次实验 ——凯撒密码的实现
JAVA实验一 编写程序实现凯撒密码 201352330 潘俊洋 一.实验说明 凯撒密码作为一种最为古老的对称加密体制,在古罗马的时候都已经很流行,他的基本思想是:通过把字母移动一定的位数来实现加 ...
- 第三周linux学习
实验二 Linux下C语言编程基础 一.实验目的 1. 熟悉Linux系统下的开发环境 2. 熟悉vi的基本操作 3. 熟悉gcc编译器的基本原理 4. 熟练使用gcc编译器的常用选项 5 .熟练使用 ...
- 假如 GFW 遇上 ML
我稍微试了一下梯子 我稍微试了一下梯子,在有梯子的情况下进行google搜索,然后wireshark 抓包.所有问题跃然纸上 当前我认为:> 只要你和一个非国内的服务器长时高频交换数据,基本上就 ...
- fcn模型训练及测试
1.模型下载 1)下载新版caffe: https://github.com/BVLC/caffe 2)下载fcn代码: https://github.com/shelhamer/fcn.berkel ...
- 如何解决abd.exe已停止工作
打开电脑,右键点击属性会出现如下界面: 点击左边高级系统设置:将会出现如下界面: 点击环境变量,点编辑. 把环境变量中的 ANDROID_ADB_SERVER_PORT 改成1122以后还遇到这个问 ...
- Redis4.0 主从复制(PSYN2.0)
Redis4.0版本相比原来3.x版本,增加了很多新特性,如模块化.PSYN2.0.非阻塞DEL和FLUSHALL/FLUSHDB.RDB-AOF混合持久化等功能.尤其是模块化功能,作者从七年前的re ...
- n位格雷曼实现
参考: 格雷码的实现 问题:产生n位元的所有格雷码. 格雷码(Gray Code)是一个数列集合,每个数使用二进位来表示,假设使用n位元来表示每个数字,任两个数之间只有一个位元值不同. 例如以下为 ...