1874: [BeiJing2009 WinterCamp]取石子游戏

Time Limit: 5 Sec  Memory Limit: 162 MB
Submit: 925  Solved: 381
[Submit][Status][Discuss]

Description

小H和小Z正在玩一个取石子游戏。 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,
每次取石子的个数有限制,谁不能取石子时就会输掉游戏。 小H先进行操作,他想问你他是否有必胜策略,如果有
,第一步如何取石子。

Input

输入文件的第一行为石子的堆数N 
接下来N行,每行一个数Ai,表示每堆石子的个数 接下来一行为每次取石子个数的种类数M 
接下来M行,每行一个数Bi,表示每次可以取的石子个数,
输入保证这M个数按照递增顺序排列。
N≤10 Ai≤1000
对于全部数据,M≤10,Bi≤10

Output

输出文件第一行为“YES”或者“NO”,表示小H是否有必胜策略。 
若结果为“YES”,则第二行包含两个数,第一个数表示从哪堆石子取,第二个数表示取多少个石子,
若有多种答案,取第一个数最小的答案,
若仍有多种答案,取第二个数最小的答案。

Sample Input

4
7
6
9
3
2
1
2

Sample Output

YES
1 1
Hint
样例中共有四堆石子,石子个数分别为7、6、9、3,每人每次可以从任何一堆石子中取出1个或者2个石子,小H有
必胜策略,事实上只要从第一堆石子中取一个石子即可。

Source

Day2

分析:比较简单的博弈论题. 预处理出sg函数值. 将每组式子的sg异或一下看是否等于0. 输出方案的话枚举是哪一堆石子取出多少个石子,如果取出后后手必输,就是答案.利用sg函数判断.

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ;
int n,a[maxn],sg[maxn],ans,Tim,vis[maxn],b[maxn],m; void init()
{
for (int i = ; i <= ; i++)
{
Tim++;
for (int j = ; j <= m; j++)
{
if (i - b[j] >= )
vis[sg[i - b[j]]] = Tim;
}
for (int j = ; j <= ; j++)
if (vis[j] != Tim)
{
sg[i] = j;
break;
}
}
} int main()
{
scanf("%d",&n);
for (int i = ; i <= n; i++)
scanf("%d",&a[i]);
scanf("%d",&m);
for (int i = ; i <= m; i++)
scanf("%d",&b[i]);
init();
for (int i = ; i <= n; i++)
{
if (i == )
ans = sg[a[i]];
else
ans ^= sg[a[i]];
}
if (ans == )
puts("NO");
else
{
puts("YES");
for (int i = ; i <= n; i++)
{
bool flag = false;
for (int j = ; j <= m; j++)
{
if (a[i] >= b[j] && (ans ^ sg[a[i]] ^ sg[a[i] - b[j]]) == )
{
printf("%d %d\n",i,b[j]);
flag = ;
break;
}
}
if (flag)
break;
}
} return ;
}

bzoj1874 [BeiJing2009 WinterCamp]取石子游戏的更多相关文章

  1. [bzoj1874][BeiJing2009 WinterCamp]取石子游戏_博弈论

    取石子游戏 bzoj-1874 BeiJing2009 WinterCamp 题目大意:题目链接. 注释:略. 想法: 我们通过$SG$函数的定义来更新$SG$的转移. 如果是寻求第一步的话我们只需要 ...

  2. 【博弈论】【SG函数】【枚举】bzoj1874 [BeiJing2009 WinterCamp]取石子游戏

    枚举第一步可能达到的状态,判断是否是必败态即可. #include<cstdio> #include<set> #include<cstring> using na ...

  3. 1874: [BeiJing2009 WinterCamp]取石子游戏 - BZOJ

    Description小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问 ...

  4. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]

    小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...

  5. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏(SG函数)

    Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 871  Solved: 365[Submit][Status][Discuss] Description ...

  6. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏

    Time Limit: 5 Sec Memory Limit: 162 MB Submit: 957 Solved: 394 [Submit][Status][Discuss] Description ...

  7. [BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】

    题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...

  8. bzoj 1874: [BeiJing2009 WinterCamp]取石子游戏【博弈论】

    先预处理出来sg值,然后先手必败状态就是sg[a[i]]的xor和为0(nim) 如果xor和不为0,那么一定有办法通过一步让xor和为0,具体就是选一个最大的sg[a[i]],把它去成其他sg值的x ...

  9. [BeiJing2009 WinterCamp]取石子游戏 Nim SG 函数

    Code: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; ...

随机推荐

  1. Array.Copy 数据是克隆吗?

    偶然看到 Array.Copy 方法的时候,想到,它是否是克隆,又是否是深克隆. 做了一个测试 public class abc { public string hello; } [TestMetho ...

  2. easyui panel异步获取后台数据在前台显示

    我在使用easyui的时候,想做一个向下图所示的效果,这个panel的样式已经做好了,想从后台异步获取json数据,然后填入到文本框中,不知道哪位大神能给点指导?万分感谢! 放入表单中,使用form对 ...

  3. 配置Tomcat使用HTTP/2

    转自: https://zhuanlan.zhihu.com/p/21349186 前情提要: Tomcat高效响应的秘密(一) Sendfile与Gzip Tomcat高效响应的秘密(二) keep ...

  4. JAVA第一次实验 ——凯撒密码的实现

    JAVA实验一   编写程序实现凯撒密码 201352330 潘俊洋 一.实验说明 凯撒密码作为一种最为古老的对称加密体制,在古罗马的时候都已经很流行,他的基本思想是:通过把字母移动一定的位数来实现加 ...

  5. 第三周linux学习

    实验二 Linux下C语言编程基础 一.实验目的 1. 熟悉Linux系统下的开发环境 2. 熟悉vi的基本操作 3. 熟悉gcc编译器的基本原理 4. 熟练使用gcc编译器的常用选项 5 .熟练使用 ...

  6. 假如 GFW 遇上 ML

    我稍微试了一下梯子 我稍微试了一下梯子,在有梯子的情况下进行google搜索,然后wireshark 抓包.所有问题跃然纸上 当前我认为:> 只要你和一个非国内的服务器长时高频交换数据,基本上就 ...

  7. fcn模型训练及测试

    1.模型下载 1)下载新版caffe: https://github.com/BVLC/caffe 2)下载fcn代码: https://github.com/shelhamer/fcn.berkel ...

  8. 如何解决abd.exe已停止工作

     打开电脑,右键点击属性会出现如下界面: 点击左边高级系统设置:将会出现如下界面: 点击环境变量,点编辑. 把环境变量中的 ANDROID_ADB_SERVER_PORT 改成1122以后还遇到这个问 ...

  9. Redis4.0 主从复制(PSYN2.0)

    Redis4.0版本相比原来3.x版本,增加了很多新特性,如模块化.PSYN2.0.非阻塞DEL和FLUSHALL/FLUSHDB.RDB-AOF混合持久化等功能.尤其是模块化功能,作者从七年前的re ...

  10. n位格雷曼实现

    参考: 格雷码的实现 问题:产生n位元的所有格雷码.   格雷码(Gray Code)是一个数列集合,每个数使用二进位来表示,假设使用n位元来表示每个数字,任两个数之间只有一个位元值不同. 例如以下为 ...