MT【126】点对个数两题之二【图论】
在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 证明在这 \(n\) 个点中距离为 \(1\) 的点对数不超过 \(\dfrac{n}{4}+\dfrac{2}{2}n^{\frac{3}{2}}\).
证明:如果两点间距离为 1 则相连,所以要求距离为 1 的点对数就是图 G 中的边数.我们只需证明:边数\(|E|\le \dfrac{n}{4}+\dfrac{2}{2}n^{\frac{3}{2}}\)
证明:\(n\)个圆中两两交点总数不超过\(2C_n^2=n(n-1)\)个(包括重复).
用\(D_k,(k=1,2\cdots,n)\)表示以\(v_k\)为圆心,半径为 1 的圆,如果 \(v_k\)与\(v_i,v_j\)相邻,
则 $ v_k\in D_i\cap D_j $ , 因此 $ v_k $ 作为 $ D_1,D_2,\cdots,D_n $ 中两圆的交点恰好被计数 \(C_{d(v_k)}^2\) 次.
故\[\begin{align*}
n(n-1)&\ge\sum\limits_{k=1}^{n}{C_{d(v_k)}^2}
&\ge\dfrac{2}{n}|E|^2-E.\quad (\textbf{利用柯西和}2|E|=\sum\limits_{k=1}^{n}{d(v_k)})
\end{align*}\]
\(\therefore |E|\le \dfrac{n}{4}+\dfrac{2}{2}n^{\frac{3}{2}}\)
MT【126】点对个数两题之二【图论】的更多相关文章
- MT【127】点对个数两题之一【图论】
在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 其中任意两个点之间的距离至少为 \(1\), 证明在这 \(n\) 个点中距离为 \(1\)的点对数不超过 \(3n\). ...
- MT【249】离心率两题
椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的一个焦点为$F$,过$F$的直线交椭圆于$A,B$两点,$M$是点$A$关于原点的对称点.若 ...
- Newtonsoft.Json C# Json序列化和反序列化工具的使用、类型方法大全 C# 算法题系列(二) 各位相加、整数反转、回文数、罗马数字转整数 C# 算法题系列(一) 两数之和、无重复字符的最长子串 DateTime Tips c#发送邮件,可发送多个附件 MVC图片上传详解
Newtonsoft.Json C# Json序列化和反序列化工具的使用.类型方法大全 Newtonsoft.Json Newtonsoft.Json 是.Net平台操作Json的工具,他的介绍就 ...
- 清橙A1206.小Z的袜子 && CF 86D(莫队两题)
清橙A1206.小Z的袜子 && CF 86D(莫队两题) 在网上看了一些别人写的关于莫队算法的介绍,我认为,莫队与其说是一种算法,不如说是一种思想,他通过先分块再排序来优化离线查询问 ...
- 最近切的两题SCC的tarjan POJ1236 POJ2186
两题都是水题,1236第一问求缩点后入度为0的点数,第二问即至少添加多少条边使全图强连通,属于经典做法,具体可以看白书 POJ2186即求缩点后出度为0的那个唯一的点所包含的点数(即SCC里有多少点) ...
- 2-SAT两题
看了大白书,学习了一下two-sat,很有意思的算法.题目就是大白书上的两题. 仅仅放一下代码作为以后的模板参考. #include <stdio.h> #include <algo ...
- COJ 0802 非传统题(二)
(颓了这么多天是时候干点正事了QAQ) 非传统题(二) 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 还是很久很久以前,chx ...
- 算法题 19 二叉平衡树检查 牛客网 CC150
算法题 19 二叉平衡树检查 牛客网 CC150 实现一个函数,检查二叉树是否平衡,平衡的定义如下,对于树中的任意一个结点,其两颗子树的高度差不超过1. 给定指向树根结点的指针TreeNode* ro ...
- 暑假训练Round1——G: Hkhv的水题之二(字符串的最小表示)
Problem 1057: Hkhv的水题之二 Time Limits: 1000 MS Memory Limits: 65536 KB 64-bit interger IO format: ...
随机推荐
- ClassLoader.loadClass()与Class.forName()的区别
ClassLoader.loadClass()与Class.forName()都是反射用来构造类的方法,但是他们的用法还是有一定区别的. 在讲区别之前,我觉得很有不要把类的加载过程在此整理一下. 在J ...
- linux 安装配置zookeeper脚本
#!/bin/bash # automatic install zookeeper echo "========= Start to install zookeeper ========== ...
- __construct 与 __destruct 区别
其实这个问法是有问题的,__construct 与 __destruct 没什么可比性,两个方法一个在对象被创建的时候触发,另一个在对象被销毁的时候触发 具体可以翻阅PHP官方手册中的 http:// ...
- tty命令详解
基础命令学习目录首页 原文链接:http://blog.chinaunix.net/uid-9525959-id-2001836.html [功能] 打印连接到标准输入的终端的文件名. [描述] ...
- BugPhobia展示篇章:学霸在线系统Alpha阶段展示
0x00:序言 1 universe, 9 planets, 204 countries,809 islands, 7 seas, and i had the privilege to meet yo ...
- 作业1-MathExam
MathExam 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 10 30 • Estim ...
- 09慕课网《进击Node.js基础(一)》HTTP-get/request
get是对request封装 可以在后台发起http请求,获取远程资源,更新或者同步远程资源 http.request(options[,callback]) 以下代码灌水失败: var http = ...
- wdatepicker控件de使用小方法汇总
在总结wdatepicker控件的使用前,先插播一条吧,下午刚心血来潮百度的一条 问?C#中Int16.Int32.Int64.之间的区别,:::嘿嘿其实百度知道就有,但还是写上吧! Int16 表示 ...
- 读书笔记 之 java编程思想3
现在已经读到第二章 ,这个发现好多已经能都知道了 但是还是有自己比较生疏的比如说就是 储存到什么地方:书中介绍五种储存的地方 分别为1储存器,2堆栈,3堆4常量储存 5非RAM储存,java的出来 ...
- 第一次spring冲刺第5天
今天进行讨论基础功能的核心代码方面,还有简单的讨论继续关于界面的美化, 计算生成的答案功能 public class Core {// char[]h={'+','-','*','/'};int re ...