Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges.
Then G=(V,E) is called a directed graph. 

Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices(v1,...,vn+1).
Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)

Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of
all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer
numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with
the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

题意的本质是查找没有出度的强连通子图,没有出度就是sink。the bottom of graph了。

就是利用Tarjan算法求强连通子图,并要用标识号标识各个强连通子图,然后记录好各个顶点属于哪强连通子图。

程序带具体的注解:

#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <algorithm>
#include <stack>
using namespace std; const int MAX_V = 5001;
vector<int> graAdj[MAX_V];//vector表示的邻接图
int conNo, vToCon[MAX_V];//强连通子图标号及顶点相应强连通子图号的数组
int low[MAX_V];//标识最低标识号。假设都属于这个标识号的顶点都属于同一连通子图
int stk[MAX_V], top;//数组表示栈
bool vis[MAX_V];//记录是否訪问过的顶点
int out[MAX_V];//强连通子图的出度。假设出度为零。那么改强连通子图为sink template<typename T>
inline bool equ(T t1, T t2) { return t1 == t2; } void dfsTar(int u, int no = 1)
{
low[u] = no;//每递归进一个顶点。初始表示low[]
stk[++top] = u;//每一个顶点记录入栈
vis[u] = true;//标志好是否訪问过了 int n = (int)graAdj[u].size();
for (int i = 0; i < n; i++)
{
int v = graAdj[u][i];
if (!vis[v])
{
dfsTar(v, no+1);//这里递归
if (low[u] > low[v]) low[u] = low[v];//更新最低标识号
}
else if (!vToCon[v] && low[u] > low[v]) low[u] = low[v];//更新
}
if (equ(low[u], no))//最低标识号和递归进的初始号同样就找到一个子图了
{
++conNo;
int v;
do
{
v = stk[top--];//出栈
vToCon[v] = conNo;//顶点相应到子图号
} while (v != u);//出栈到本顶点,那么改子图全部顶点出栈完成
}
} void Tarjan(int n)
{
conNo = 0;//记得前期的清零工作
fill(vToCon, vToCon+n+1, 0);
fill(low, low+n+1, 0);
fill(vis, vis+n+1, false);
top = -1; for (int u = 1; u <= n; u++) if (!vis[u]) dfsTar(u);
} int main()
{
int V, E, u, v;
while(~scanf("%d %d", &V, &E) && V)
{
for (int i = 1; i <= V; i++)
{
graAdj[i].clear();//清零
}
for (int i = 0; i < E; i++)
{
scanf("%d %d", &u, &v);
graAdj[u].push_back(v);//建立vector表示的邻接表
}
Tarjan(V);
fill(out, out+conNo+1, 0);
for (int u = 1; u <= V; u++)
{
int n = graAdj[u].size();
for (int i = 0; i < n; i++)
{
int v = graAdj[u][i];
if (vToCon[u] != vToCon[v])
{
out[vToCon[u]]++;//记录强连通子图号的出度数
}
}
}
for (int u = 1; u <= V; u++)//出度为零,即为答案:Graph Bottom
{
if (!out[vToCon[u]]) printf("%d ", u);
}
putchar('\n');
}
return 0;
}

POJ 2553 The Bottom of Graph 强连通图题解的更多相关文章

  1. POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...

  2. poj 2553 The Bottom of a Graph(强连通分量+缩点)

    题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  3. POJ 2553 The Bottom of a Graph (强连通分量)

    题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...

  4. POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)

    Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...

  5. POJ 2553 The Bottom of a Graph TarJan算法题解

    本题分两步: 1 使用Tarjan算法求全部最大子强连通图.而且标志出来 2 然后遍历这些节点看是否有出射的边,没有的顶点所在的子强连通图的全部点,都是解集. Tarjan算法就是模板算法了. 这里使 ...

  6. POJ 2553 The Bottom of a Graph (Tarjan)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11981   Accepted: ...

  7. poj 2553 The Bottom of a Graph : tarjan O(n) 存环中的点

    /** problem: http://poj.org/problem?id=2553 将所有出度为0环中的点排序输出即可. **/ #include<stdio.h> #include& ...

  8. poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9641   Accepted:  ...

  9. poj - 2186 Popular Cows && poj - 2553 The Bottom of a Graph (强连通)

    http://poj.org/problem?id=2186 给定n头牛,m个关系,每个关系a,b表示a认为b是受欢迎的,但是不代表b认为a是受欢迎的,关系之间还有传递性,假如a->b,b-&g ...

随机推荐

  1. Mysql分区的技能

    1. 查看分区信息 (1)explain partitions select * from TDM_YTMF_BRAND_CATE_GDS_STC_D 语法:explain partitions se ...

  2. 修复eclipse build-helper-maven-plugin 异常

    安装 help --> install new http://repo1.maven.org/maven2/.m2e/connectors/m2eclipse-buildhelper/0.15. ...

  3. java格式化百分比

    NumberFormat nf = NumberFormat.getPercentInstance(); System.out.println(nf.format(0.47)); 显示:47% Dec ...

  4. MVC第一次访问比较慢的解决方案

    一.NGen优化 %WINDIR%\Microsoft.NET\Framework64\v4.0.30319\ngen install EntityFramework.Core.dll %WINDIR ...

  5. mysql字符集和字符排序

    mysql的字符集和字符序:    字符序:字符序(Collation)是指在同一字符集内字符之间的比较规则    一个字符序唯一对应一种字符集,但一个字符集可以对应多种字符序,其中有一个是默认字符序 ...

  6. iOS蓝牙BLE4.0通信功能

    概述 iOS蓝牙BLE4.0通信功能,最近刚学的苹果,为了实现蓝牙门锁的项目,找了一天学习了下蓝牙的原理,亲手测试了一次蓝牙的通信功能,结果成功了,那么就把我学习的东西分享一下. 详细 代码下载:ht ...

  7. 140730暑期培训.txt

    1.大数加减法    思路分析:        1.将数据当做字符串输入(gets(s))        2.将字符型转换为整型,逆着存            char? int      i=0,j ...

  8. XMLHttpRequest cannot load ...谷歌浏览器跨域问题

    HTML页面通过Ajax调用公网web服务时,浏览器请求发送成功,但是响应的 xhr.status==0,控制台报错如下 XMLHttpRequest cannot load http://ws.we ...

  9. 【LeetCode】145. Binary Tree Postorder Traversal (3 solutions)

    Binary Tree Postorder Traversal Given a binary tree, return the postorder traversal of its nodes' va ...

  10. HDU 2604 Queuing (矩阵乘法)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...