https://www.analyticsvidhya.com/blog/2015/07/difference-machine-learning-statistical-modeling/

http://normaldeviate.wordpress.com/2012/06/12/statistics-versus-machine-learning-5-2/

https://www.quora.com/What-is-the-difference-between-statistics-and-machine-learning

machine learning is an algorithm that can learn from data without relying on rules-based programming.

Statistical modelling is formalization of relationships between variables in the form of mathematical equations.

共同的目标:

learn from data,但是statistical learning的目标更多的是从手头上的数据学习后实现统计推断:得出结论

不同点从以下几个方面来阐述:

schools they come from:

machine learning是计算机科学和人工智能的一个子领域,用于构建可以从数据中学习到model,而不需要显示地编程学习rule

statistical model:是数学的一个分支,用于发现多个变量之间的关系,从而可以预测输出

diffrent eras(不同时代的产物)

statistical modelling已经存在几世纪的时间了,而machine learning实际上从1990年代才变得清晰,随着计算资源便宜化和能力巨大提高而开始成为现实

假设依赖:

统计模型往往有一些预设的假设,比如一个简单的线性回归模型会有以下假设:

1. 自变量和因变量之间是线性关系;

2. 随机变量是同方差同分布

3. 因变量的误差均值为0

4. 观测值之间是互相独立的;

5.每个因变量的值是正态分布

同样地,逻辑回归也会有其一堆预设的假设,只有当假设得到满足时,模型的效果才会比较好。而机器学习算法虽然也有部分假设,但是大大少于统计模型的假设。机器学习我们也无需指出自变量或者因变量所服从的分布

处理的数据类型:

机器学习可以处理的数据具有wide(变量的维数),deep(样本的数量巨大),而statistical model则仅适用于低维度,少样本数据集的情况,否则及其容易产生过拟合。

命名范式:

formulation:

虽然统计学模型和机器学习模型的目标是类似的,但是其最终学习的模型公式却有明显的区别:

对于统计模型,我们往往需要估计出特定样式的函数f:

Dependent Variable ( Y )  = f(Independent Variable) + error function

而,对于机器学习,则直接剔除上述f,而直接从输入到输出(可能是线性,也可能是非线性的函数)

Output(Y)  ----- >  Input (X)

预测能力:

"自然之力不会在发生一件事情之前做出任何假设。。"

因此,在一个预测model中,越少的假设条件,预测的能力会越强。机器学习正如名字所蕴含的意义其需要更少的人为参与。机器学习通过不断地迭代使得计算机自己发现隐藏在数据中的pattern.由于机器综合了所有的样本数据并且没有任何(或仅有少量)的预定假设,因此预测能力会大大强于统计模型。统计模型更多的是数学密集并且基于系数估计,它要求建模人员本身已经理解了变量之间本身存在的关系,只有这样建设的模型才会有用。

统计学家和机器学习工程师对模型输出的不同描述:

  • ML professional: “The model is 85% accurate in predicting Y, given a, b and c.”
  • Statistician: “The model is 85% accurate in predicting Y, given a, b and c; and I am 90% certain that you will obtain the same result.”

machine learning model(algorithm model) .vs. statistical model的更多相关文章

  1. How do I learn machine learning?

    https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? ...

  2. Introducing: Machine Learning in R(转)

    Machine learning is a branch in computer science that studies the design of algorithms that can lear ...

  3. Machine Learning - XV. Anomaly Detection异常检測 (Week 9)

    http://blog.csdn.net/pipisorry/article/details/44783647 机器学习Machine Learning - Andrew NG courses学习笔记 ...

  4. 壁虎书1 The Machine Learning Landscape

    属性与特征: attribute: e.g., 'Mileage' feature: an attribute plus its value, e.g., 'Mileage = 15000' Note ...

  5. Intro to Machine Learning

    本节主要用于机器学习入门,介绍两个简单的分类模型: 决策树和随机森林 不涉及内部原理,仅仅介绍基础的调用方法 1. How Models Work 以简单的决策树为例 This step of cap ...

  6. Note for video Machine Learning and Data Mining——Linear Model

    Here is the note for lecture three. the linear model Linear model is a basic and important model in ...

  7. A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning

    A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...

  8. (转)Introduction to Gradient Descent Algorithm (along with variants) in Machine Learning

    Introduction Optimization is always the ultimate goal whether you are dealing with a real life probl ...

  9. [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...

随机推荐

  1. Maven 学习笔记(一)

    什么是 maven? 对于已经使用过 maven 的用户来说 maven 就是一个架构工具,使用它可以将代码构建成一个可发布的工具.当然也有人会说maven是一个项目管理的工具.当然各有各的说法,那么 ...

  2. python中不可变数据类型和可变数据类型

    在学习python过程中我们一定会遇到不可变数据类型和可变数据类型. 1.名词解释 以下所有的内容都是基于内存地址来说的. 不可变数据类型: 当该数据类型的对应变量的值发生了改变,那么它对应的内存地址 ...

  3. 《Tomcat日志系统详解》

    综合:Tomcat下相关的日志文件 Cataline引擎的日志文件,文件名catalina.日期.log Tomcat下内部代码丢出的日志,文件名localhost.日期.log(jsp页面内部错误的 ...

  4. 用imageMagick合成图片添加图片水印

    用imageMagick合成图片的方式大致有三种, 使用convert命令加 +append或-append参数 使用convert命令加 -composite参数 直接使用composite命令来完 ...

  5. c#调用webservices

    有两种方式,静态调用(添加web服务的暂且这样定义)和动态调用: 静态调用: 使用添加web服务的方式支持各种参数,由于vs2010会自动转换,会生成一个特定的Reference.cs类文件   动态 ...

  6. c#基础学习(0629)之导出Excel方法

    给予NPOI插件的方法,所以首先要下载NPOI插件:vs项目中点击“项目”==>“管理NoGet程序包”==>搜索“NPOI”然后下载==>using引入Controller代码: ...

  7. 远程桌面如何向远程的计算机发送ctrl+alt+del

    远程桌面如何向远程的计算机发送ctrl+alt+del ? 可以使用 ctrl+alt+end 组合键代替 ctrl+alt+del 组合键

  8. 【原】Spring activiti 环境搭建之数据库创建

    由于在开发工作流的时候,避免不了要保存一些数据和流程走向;所以在搭建Spring activiti开发环境的时候需要把官方提供的23张表创建到我们的DB,后续的流程都会在这些表中记录. 1.创建代码如 ...

  9. Java并发常见问题

    ConcurrentHashMap源码分析,参考:http://blog.csdn.net/do_smile/article/details/46911727 HashMap源码分析,参考:http: ...

  10. 面向连接的传输TCP(一)

    这篇博客主要是对计算机网络自顶向上做的阅读笔记,深入地了解TCP 一.TCP连接 1.特点: a.TCP是面向连接的,因为一个进程在向另一个进程进行数据传输之前必须先要握手,即要互相发送报文,以确认信 ...