题面

题解

求一个有特殊性质的有向图的生成树的个数。

首先,有向图的生成树的个数可以用矩阵树定理,能够得到\(40\)分。

但是如果它是一个\(\mathrm{DAG}\)就很好做,枚举每一个点的父亲,答案就是\(\prod d[i]\),\(d\)是每个点的入度

发现加了一条边之后只会形成一个环,设环上的点为\(a_1, a_2, \cdots, a_k\),那么形成的不合法的生成树有\(\frac{\prod_i d[i]}{\prod_{i = 1} ^ k d[a_i]}\)种。

于是答案就是\(\prod_i d[i] - \frac{\prod_i d[i]}{\prod_{i = 1} ^ k d[a_i]}\)

代码

#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define clear(x, y) memset(x, y, sizeof(x)) inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(100010), maxm(200010), Mod(1000000007);
struct edge { int next, to; } e[maxm];
int head[maxn], e_num, n, m, vis[maxn], deg[maxn];
int sx, sy, ans = 1, dmul = 1, f[maxn];
inline void add_edge(int from, int to)
{
e[++e_num] = (edge) {head[from], to};
head[from] = e_num;
} int fastpow(int x, int y)
{
int ans = 1;
for(; y; y >>= 1, x = 1ll * x * x % Mod)
if(y & 1) ans = 1ll * ans * x % Mod;
return ans;
} void dfs(int x)
{
if(vis[x]) return; vis[x] = 1;
if(x == sy) return (void) (f[x] = 1ll * dmul
* fastpow(deg[x], Mod - 2) % Mod);
for(RG int i = head[x]; i; i = e[i].next)
dfs(e[i].to), f[x] = (f[x] + f[e[i].to]) % Mod;
f[x] = 1ll * f[x] * fastpow(deg[x], Mod - 2) % Mod;
} int main()
{
n = read(), m = read(), sx = read(), sy = read();
for(RG int i = 1, a, b; i <= m; i++)
a = read(), b = read(), add_edge(b, a), ++deg[b];
++deg[1];
for(RG int i = 1; i <= n; i++)
{
if(i == sy) ans = 1ll * ans * (deg[i] + 1) % Mod;
else ans = 1ll * ans * deg[i] % Mod;
dmul = 1ll * dmul * deg[i] % Mod;
}
dfs(sx); ans = (ans - f[sx] + Mod) % Mod;
printf("%d\n", ans);
return 0;
}

【HNOI2015】落忆枫音的更多相关文章

  1. BZOJ 4011: [HNOI2015]落忆枫音( dp )

    DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). ---------------------------------------- ...

  2. bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)

    4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Statu ...

  3. [HNOI2015]落忆枫音 解题报告

    [HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么 ...

  4. 4011: [HNOI2015]落忆枫音

    4011: [HNOI2015]落忆枫音 链接 分析: 原来是一个DAG,考虑如何构造树形图,显然可以给每个点找一个父节点,所以树形图的个数就是$\prod\limits_u deg[u]$. 那么加 ...

  5. BZOJ4011: [HNOI2015]落忆枫音

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...

  6. [HNOI2015]落忆枫音

    题目描述 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂......我们也不可能再 ...

  7. BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...

  8. BZOJ 4011: [HNOI2015]落忆枫音 计数 + 拓扑排序

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...

  9. [bzoj4011] [洛谷P3244] [HNOI2015] 落忆枫音

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂--我们也 ...

  10. luogu3244 bzoj4011 HNOI2015 落忆枫音

    这道题目题面真长,废话一堆. 另外:这大概是我第一道独立做出来的HNOI2011年以后的题目了吧.像我水平这么差的都能做出来,dalao您不妨试一下自己想想? 题目大意:给一个DAG,其中1号点没有入 ...

随机推荐

  1. Oracle GoldenGate DDL 详细说明 使用手册(较早资料)

    一. 概述 DDL 相关的参数包括:DDL.DDLERROR.DDLOPTIONS.DDLSUBST.DDLTABLE.GGSCHEMA. PURGEDDLHISTORY.PURGEMARKERHIS ...

  2. [翻译] InstagramPhotoPicker

    InstagramPhotoPicker Present Image Picker like Instagram. 展示图片选择器,像Instagram这款应用一样. Installation - 安 ...

  3. WDS使用捕获映像制作企业自定义映像

    来源:http://www.07net01.com/linux/WDSshiyongbuhuoyingxiangzhizuoqiyezidingyiyingxiang_545749_137448761 ...

  4. cxfreeze打包python程序的方法说明(生成安装包,实现桌面快捷方式、删除快捷方式)

    一.cxfreeze基础 1.cxfreeze功能 python代码文件转exe方法有三种,分别是cx_freeze,py2exe,PyInstaller,这三种方式各有千秋,本人只用过py2exe和 ...

  5. 铁乐学Python_day06-整数和字符串小数据池

    python小数据池(内存地址) 今天来学习认识一下python中的小数据池. 我们都知道 ==是用来作比较,要是两个变量的数值相等, 用==比较返回的bool值会是True: a = 1000 b ...

  6. scrapy爬虫框架之Xpath选择器

    问题: 本篇博文主要记录scrapy框架爬取伯乐在线文章的相关知识,在实践中学习对框架的理解.今天主要记录了xpath的相关用法以及语法规范. ----->>>点击进入爬取页面 一. ...

  7. CURL的学习和应用

    curl安装: xp下面的安装 :修改php.ini文件的设置,找到php_curl.dll //取消下在的注释extension=php_curl.dll linux下面安装: # wget htt ...

  8. Robot Framework自动化测试---Selenium API

    一.浏览器驱动 通过不同的浏览器执行脚本. Open Browser Htpp://www.xxx.com chrome 浏览器对应的关键字: firefox FireFox ff internete ...

  9. Robotframework测试相关库的简单整理

    一. 官网地址 http://robotframework.org/#libraries 二.几类测试所用到的常用库初步整理 1. UI自动化测试 Selenium2Library.BuiltIn(自 ...

  10. no.random.randn

    numpy中有一些常用的用来产生随机数的函数,randn就是其中一个,randn函数位于numpy.random中,函数原型如下: numpy.random.randn(d0, d1, ..., dn ...