https://zhuanlan.zhihu.com/p/35046241

深度学习炼丹劝退师
278 人赞同了该文章

从最近的比赛学习CTR/CVR

最近在玩kaggle的talking data的比赛,适逢IJCAI2018的比赛也是CTR问题,故将最近学习的东西整理下分享,欢迎大家拍砖。

CTR预估就是这样的任务:给定用户或某唯一标识,给定一个商品(Product),给定了一定的环境,来看用户会不会买这个商品,买商品的概率有多高;或者说给用户推荐一个电影,用户会不会看这个电影,看的概率有多高。形式化的表示就是建模P(click|content)给定上下文,建模点击/购买/下载/使用的概率。

CTR是很多电商,社交,信息流涉及到盈利的非常关键的技术,各家都非常重视,CTR微小的提升,带来的就是可观的盈利。

CTR问题为什么是一个值得拿出来研究的问题,是因为问题的特殊性。

  • 存在高维度的稀疏特征

比如从用户的维度看,大的电商其用户有上亿,商品种类也繁多,这样简单的独热编码就带来了上亿维的特征

  • 很多离散性质的特征

比如其行为发生时间,行为发生的渠道/页面位置等

一般来讲,对于CTR问题解决方向有两个,一是通过精巧的特征工程结合简单的模型(LR),这需要非常之高的专家知识和特征工程能力。二是弱化特征工程,通过模型的复杂性来自动发现建模,比较有代表的是Facebook的GBDT+LR,FM,FFM,DNN等方法。深度学习风潮兴起之后,很多基于NN的方法,如谷歌的deep and wide, Deep FM, FNN等方法也取得了不错的效果。

参考 https://github.com/wzhe06/Ad-papers,wzhe06同学搜集的论文列表

除了非常厉害的特征工程助你取胜之外,下面有一些经典的论文和方法讲解。当然这只是一般套路,针对具体的数据需要你有自己的理解,活用方法和创新才能立于不败之地。

0.FM/FFM

FM和FFM是台大的童鞋们在Netflix的比赛中把名声打响,后来在CTR中一直有不错的效果,FM和FFM的设计,隐含了很多矩阵分解,以及深度学习中embedding的思想,可以说这种压缩降维表示的思想在高维稀疏数据中都有不错的效果,这篇博客对其原理有讲解。https://blog.csdn.net/mmc2015/article/details/51760681不过我在实践中发现,libffm对于talking data这种数据量巨大,极不平衡的情况下没法收敛,具体的原因还在排查。

1.FTRL

Ad Click Prediction a View from the Trenches

这篇论文是非常经典的FTRL方法,在taiking data的kernel上有Giba大佬的分享 giba-darragh-ftrl-rerevisited
FTRL还解决了在线学习的问题,在线学习是算法实用化非常关键的一点。中文博客在这里有对原理的讲解, 感兴趣的同学可以看一看。

2.Practical Lessons from Predicting Clicks on Ads at Facebook

这篇文章也非常有名,是把GBDT的叶子结点送给LR,通过模型自动发现学习组合特征。在业界和竞赛上都有不错的效果,中文博客如下三篇对这个讲解不错,Xgboost使用简单的

new_feature= xgb.predict(d_test, *pred_leaf*=True)

就可以拿到GBDT的叶子结点特征,非常方便

https://breezedeus.github.io/2014/11/19/breezedeus-feature-mining-gbdt.html#fn:fbgbdt

https://blog.csdn.net/dengxing1234/article/details/73739836

https://blog.csdn.net/lilyth_lilyth/article/details/48032119

3.一些NN方法

NN的方法直觉思路是,通过embedding得到向量空间的表示,然后拿到表示后通过NN模型复杂的非线性完成分类。

在talking data一开始的时候,我在kernel写了个NN一把梭的baseline,后来有几个大佬在这上面做了一些优化,看起来比较简单。https://www.kaggle.com/baomengjiao/embedding-with-neural-network

下面是一些比较经典的论文,这些论文很多在去年的腾讯计算广告计算大赛中第一名都有所使用,并且取得了单模型就能排到第三的很好的成绩,所以深度学习不容小觑。

youtebe使用DNN做推荐

Deep & wide

下面是一些过往比赛的整理:

kaggle:outbrain click prediction
https://www.kaggle.com/c/outbrain-click-prediction/discussion
kaggle:Display Advertising Challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
kaggle Click-ThroughRate Prediction
https://www.kaggle.com/c/avazu-ctr-prediction/leaderboard
腾讯社交广告大赛
http://algo.tpai.qq.com/person/mobile/?from=singlemessage&qz_gdt=cp77gwalayaicijolfwq
天池优惠券使用预测
https://tianchi.aliyun.com/competition/introduction.htm?spm=5176.100066.0.0.6f5fd780FIIzQn&raceId=231587

这里有一个完整的CTR的解决方法,http://blog.csdn.net/chengcheng1394/article/details/78940565,kaggle的数据集,比较适合学习,讲解地非常详细。

从最近的比赛学习CTR/CVR的更多相关文章

  1. 我的第一个 Kaggle 比赛学习 - Titanic

    背景 Titanic: Machine Learning from Disaster - Kaggle 2 年前就被推荐照着这个比赛做一下,结果我打开这个页面便蒙了,完全不知道该如何下手. 两年后,再 ...

  2. ACM比赛学习指导(20180223)

    0.比赛介绍 (1)浙江省大学生程序设计比赛,3人一组,题目为英文 (2)ACM程序设计比赛 百度百科介绍 1.理论学习 (1)<挑战程序设计竞赛>,秋叶拓哉,巫泽俊 (2)<算法竞 ...

  3. multi-task learning

    多任务学习, CTR, CVR 任务同时训练, 同时输出概率.

  4. CTR预估模型演变及学习笔记

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]如果你对智能推荐感兴趣,欢迎先浏览我的另一篇随笔:智能推荐算法演 ...

  5. 深度学习在CTR预估中的应用

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由鹅厂优文发表于云+社区专栏 一.前言 二.深度学习模型 1. Factorization-machine(FM) FM = LR+ e ...

  6. 推荐中的多任务学习-ESMM

    本文将介绍阿里发表在 SIGIR'18 的论文ESMM<Entire Space Multi-Task Model: An Effective Approach for Estimating Po ...

  7. 多任务学习(MTL)在转化率预估上的应用

    今天主要和大家聊聊多任务学习在转化率预估上的应用. 多任务学习(Multi-task learning,MTL)是机器学习中的一个重要领域,其目标是利用多个学习任务中所包含的有用信息来帮助每个任务学习 ...

  8. CTR预估经典模型总结

    计算广告领域中数据特点:    1 正负样本不平衡    2 大量id类特征,高维,多领域(一个类别型特征就是一个field,比如上面的Weekday.Gender.City这是三个field),稀疏 ...

  9. 深入FM和FFM原理与实践

    FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩.美团点评技术团队在搭建DSP的过 ...

随机推荐

  1. TCP的三次握手过程?为什么会采用三次握手,若采用二次握手可以吗

    谢希仁版<计算机网络>中的例子: "已失效的连接请求报文段”的产生在这样一种情况下: client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误 ...

  2. EWS:邮箱的一个开放的接口服务

    https://3gstudent.github.io/3gstudent.github.io/Exchange-Web-Service(EWS)%E5%BC%80%E5%8F%91%E6%8C%87 ...

  3. C# 常用工具方法之DataTable(一)

    1.DataTable 转 泛型T的List /// <summary> /// 数据集DataTable转换成List集合 /// </summary> /// <ty ...

  4. Python - 基本数据类型 - 第二天

    Python3 基本数据类型 Python 中的变量不需要声明.每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建. 在 Python 中,变量就是变量,它没有类型,我们所说的"类型& ...

  5. 学Haskell不该误入范畴论

    浪费了两个星期去学范畴论,结果没啥用,关键是太抽象了.理解不能. 实际上压根联系也没那么紧密.

  6. Centos7 日志查看工具

    1  概述     日志管理工具journalctl是centos7上专有的日志管理工具,该工具是从message这个文件里读取信息.Systemd统一管理所有Unit的启动日志.带来的好处就是,可以 ...

  7. PostgreSQL查询当前时间的时间戳

    一.问题 使用PostgreSQL获取当前系统时间戳.众所周知,在MySQL中是这样的: select UNIX_TIMESTAMP(NOW()) 二.解决方案 (1)精确到秒 " (2)精 ...

  8. vue单页面应用中动态修改title

    https://www.jianshu.com/p/b980725b62e8 https://www.npmjs.com/package/vue-wechat-title 详细信息查看:vue-wea ...

  9. Risc-V简要概括

    1.Risc-V硬件平台术语 一个RiscV硬件平台可以包含一个或多个RiscV兼容的核心.其它非RiscV兼容的核心.固定功能的加速器.各种物理存储器结构.I/O设备以及允许这些部件相互连通的互联结 ...

  10. day 44

    目录 前端 什么是前端 什么是后端 web服务的本质 请求方式 HTTP协议 1.四大特性 2.数据格式 请求格式 响应格式 响应状态码 HTML 文件的后缀名 HTML的注释 HTML的文档结构 标 ...