Increase the Constraints

定义两个等长的01字符串的汉明距离为它们字符不同的对应位置的个数。

给你两个01串S,T,现在有q个询问,每次指定S,T中两个定长的子串询问它们的汉明距离。

1≤|S|,|T|≤200000,1≤q≤400000

cz_xuyixuan的题解

字符不同=长度-字符相同。考虑到两个字符串的匹配问题可以用FFT处理,于是往FFT方面考虑。

分块FFT,令分块大小为B,进行O(\(\frac{n}{B}\))次FFT,处理出O(\(\frac{n}{B}\))个T的后缀与S的每个后缀能够匹配的位数。询问时容斥一下并加上边角暴力就好了。

这样的时间复杂度是O(\(\frac{n^2\log n}{B}\)+qB),取B=n\(\sqrt{\frac{\log n}{q}}\)=‭1,327.013205时,可以获得渐进意义下最优复杂度O(n\(\sqrt{q log n}\))。

有一种高妙的做法来解决01匹配问题。我们令0为1,1为-1,然后FFT。那么两个字符如果匹配,得数为1,否则为-1。我们给1和-1的总和加上长度,那么就变成了匹配得2,不匹配得0.

由于NTT常数大,所以程序取B=7200。

CO int N=524288;
int rev[N],omg[N]; void NTT(int a[],int lim,int dir){
for(int i=0;i<lim;++i)
if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int i=1;i<lim;i<<=1)
for(int j=0;j<lim;j+=i<<1)
for(int k=0;k<i;++k){
int t=mul(omg[lim/(i<<1)*k],a[j+i+k]);
a[j+i+k]=add(a[j+k],mod-t),a[j+k]=add(a[j+k],t);
}
if(dir==-1){
int ilim=fpow(lim,mod-2);
for(int i=0;i<lim;++i) a[i]=mul(a[i],ilim);
}
} CO int B=7200;
char s[N],t[N];int ls,lt;
int index[N],l[N],r[N],tot;
int a[N],b[N],ans[N/B][N]; int query(int ps,int pt){
int ans=0;
if(ps+B>=ls or pt+B>=lt){
for(;ps<ls and pt<lt;++ps,++pt) ans+=s[ps]==t[pt];
return ans;
}
for(;index[pt]==index[pt-1];++ps,++pt) ans+=s[ps]==t[pt];
ans+=::ans[index[pt]][ps];
return ans;
}
int main(){
scanf("%s%s",s,t);
ls=strlen(s),lt=strlen(t);
for(int i=0;i<lt;++i){
if(i%B==0) l[++tot]=i;
index[i]=tot,r[tot]=i;
}
for(int p=1;p<=tot;++p){
memset(a,0,sizeof a);
for(int i=0;i<ls;++i) a[i]=s[i]=='0'?1:mod-1;
memset(b,0,sizeof b);
for(int i=l[p];i<lt;++i) b[lt-1-i]=t[i]=='0'?1:mod-1;
int n=lt-l[p]-1; int len=ceil(log2(ls+n)),lim=1<<len;
for(int i=0;i<lim;++i) rev[i]=rev[i>>1]>>1|(i&1)<<(len-1);
omg[0]=1,omg[1]=fpow(3,(mod-1)/lim);
for(int i=2;i<lim;++i) omg[i]=mul(omg[i-1],omg[1]);
NTT(a,lim,1),NTT(b,lim,1);
for(int i=0;i<lim;++i) a[i]=mul(a[i],b[i]);
omg[1]=fpow(omg[1],mod-2);
for(int i=2;i<lim;++i) omg[i]=mul(omg[i-1],omg[1]);
NTT(a,lim,-1); for(int i=0;i<ls;++i){
ans[p][i]=add(a[i+n],add(n+1,mod-max(0,i+n-ls+1))); // edit 1
ans[p][i]=mul(ans[p][i],i2);
}
}
for(int q=read<int>();q--;){
int ps=read<int>(),pt=read<int>(),n=read<int>();
printf("%d\n",n-query(ps,pt)+query(ps+n,pt+n));
}
return 0;
}

处理ans数组的时候还是要放到模意义下,因为1和-1的总和可能为负数。

CF472G Increase the Constraints的更多相关文章

  1. 【CF472G】Design Tutorial: Increase the Constraints

    Description 给出两个01序列\(A\)和\(B\) 要求回答\(q\)个询问每次询问\(A\)和\(B\)中两个长度为\(len\)的子串的哈明距离 ​ 哈明距离的值即有多少个位置不相等 ...

  2. cf 472G Design Tutorial: Increase the Constraints 分块+压位/FFT

    题目大意 给出两个\(01\)序列\(A\)和\(B\) 哈明距离定义为两个长度相同的序列中,有多少个对应位置上的数字不一样 "00111" 和 "10101" ...

  3. CF数据结构练习

    1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...

  4. Propagation of Visual Entity Properties Under Bandwidth Constraints

    1. Introduction The Saga of Ryzom is a persistent massively-multiplayer online game (MMORPG) release ...

  5. iOS Programming Auto Layout: Programmatic Constraints 自动布局:通过编程限制

    iOS Programming  Auto Layout: Programmatic Constraints  1.  However, if your views are created in co ...

  6. States of Integrity Constraints

    States of Integrity Constraints As part of constraint definition, you can specify how and when Oracl ...

  7. Go build constraints

    Go语言有一个不(奇)错(葩)的设计,就是build constraints(构建约束).可以在源码中通过注释的方式指定编译选项,比如只允许在linux下,或者在386的平台上编译啊之类的:还可以通过 ...

  8. Unable to simultaneously satisfy constraints.

    在进行版本的迭代更新时,新功能需求需要对主页面的UI进行重新的布局,但是,报了错误,出了好多约束方面的问题: Unable to simultaneously satisfy constraints. ...

  9. Drop all the tables, stored procedures, triggers, constraints and all the dependencies in one SQL statement

    Is there any way in which I can clean a database in SQl Server 2005 by dropping all the tables and d ...

随机推荐

  1. centos7.2上安装CDH5.16.2及Spark2【原创】

    背景:我自己的电脑配置太低,想在centos操作系统上安装CDH5.1.2并配置集群,我去阿里云上买了3台按流量计费的阿里云服务器. 大家一定要注意,配置,购买的阿里云服务器不要太低了.建议:3台2核 ...

  2. 【java】使用jsp命令查看系统中java运行的程序及进程号

    对于java独立运行的程序,他们在进程中的名字都是 Java(TM) Platform SE binary,如图 我们想知道这个进程运行的是哪个程序,怎么办呢? 答案是:可以在命令行下,运行:jps命 ...

  3. Python【每日一问】29

    问: [基础题]:给一个不多于 5 位的正整数,要求:一.求它是几位数,二.逆序印出各位数字[提高题]:某个公司采用公用电话传递数据,数据是四位的整数,在传递过程中是加密的,加密规则如下:每位数字都加 ...

  4. [转帖]String、StringBuilder与StringBuffer

    String.StringBuilder与StringBuffer https://www.jianshu.com/p/37f3799bdb56 1.String String本质 String是不可 ...

  5. 存储过程中的BeginEnd

    存储过程中的BeginEnd和其它语言中的花括号,本身没有事务作用,主要有两个作用1.使语句结果清晰2.语句块作用,比如在 if 后面使用.

  6. play framework + sbt入门之环境搭建

    一 sbt的使用 SBT = (not so) Simple Build Tool,是scala的构建工具,与java的maven地位相同.其设计宗旨是让简单的项目可以简单的配置,而复杂的项目可以复杂 ...

  7. Linux常用命令wc

    wc名字来源: wc -- word, line, character, and byte count The wc utility displays the number of lines, wor ...

  8. mycat在windows环境下安装和启动

    1.下载从如下地址下载mycat的安装包: http://www.mycat.io/ eg:Mycat-server-1.6.6.1-release-20181031195535-win.tar.gz ...

  9. dubbo循序渐进 - 使用Docker安装Nexus

    docker search nexus docker pull docker.io/sonatype/nexus3 mkdir -p /usr/local/nexus3/nexus-data /usr ...

  10. JS基础 —— call、apply 和 bind

    函数的三个原型方法 作用:改变this指向 call MDN:https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Glo ...