You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is (target[0], target[1]). There are several ghosts on the map, the i-th ghost starts at (ghosts[i][0], ghosts[i][1]).

Each turn, you and all ghosts simultaneously *may* move in one of 4 cardinal directions: north, east, west, or south, going from the previous point to a new point 1 unit of distance away.

You escape if and only if you can reach the target before any ghost reaches you (for any given moves the ghosts may take.)  If you reach any square (including the target) at the same time as a ghost, it doesn't count as an escape.

Return True if and only if it is possible to escape.

Example 1:
Input:
ghosts = [[1, 0], [0, 3]]
target = [0, 1]
Output: true
Explanation:
You can directly reach the destination (0, 1) at time 1, while the ghosts located at (1, 0) or (0, 3) have no way to catch up with you.
Example 2:
Input:
ghosts = [[1, 0]]
target = [2, 0]
Output: false
Explanation:
You need to reach the destination (2, 0), but the ghost at (1, 0) lies between you and the destination.
Example 3:
Input:
ghosts = [[2, 0]]
target = [1, 0]
Output: false
Explanation:
The ghost can reach the target at the same time as you.

Note:

  • All points have coordinates with absolute value <= 10000.
  • The number of ghosts will not exceed 100.

这道题就是经典的吃豆人游戏啦,不过是简化版,小人只能躲开鬼魂,并不能吃大力丸,反干鬼魂。小人在原点,有若干个鬼魂在不同的位置,给了一个目标点,问小人能不能安全到达目标点。这里的鬼魂的设定跟游戏中的一样,都是很智能的,会朝着你移动,而且这里设定了如果跟鬼魂同时到达目标点也算输。那么实际上这道题就是要求出小人到目标点的最短距离,注意这里的距离不是两点之间的 Euclidean 距离,而应该是曼哈顿距离,即横纵坐标分别求差的绝对值再相加。求出小人到目标点到最短距离后,还要求每个鬼魂到目标点的最短距离,如果有一个鬼魂到目标带你的最短距离小于等于小人到目标点到最短距的话,那么就返回 false,否则返回 true,参见代码如下:

解法一:

class Solution {
public:
bool escapeGhosts(vector<vector<int>>& ghosts, vector<int>& target) {
int dist = abs(target[]) + abs(target[]), mn = INT_MAX;
for (auto ghost : ghosts) {
int t = abs(ghost[] - target[]) + abs(ghost[] - target[]);
mn = min(mn, t);
}
return dist < mn;
}
};

我们可以对上面的解法进行一个小优化,就是其实并不需要算完每一个鬼魂到目标点到最短距离,而是每算一个就进行比较,只要小于等于小人到目标点的最短距离了,就直接返回 false。循环退出后返回 true,参见代码如下:

解法二:

class Solution {
public:
bool escapeGhosts(vector<vector<int>>& ghosts, vector<int>& target) {
int dist = abs(target[]) + abs(target[]);
for (auto ghost : ghosts) {
int t = abs(ghost[] - target[]) + abs(ghost[] - target[]);
if (t <= dist) return false;
}
return true;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/789

参考资料:

https://leetcode.com/problems/escape-the-ghosts/

https://leetcode.com/problems/escape-the-ghosts/discuss/116507/Java-5-liner

https://leetcode.com/problems/escape-the-ghosts/discuss/116522/C%2B%2BJavaPython-Easy-and-Concise-Solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 789. Escape The Ghosts 逃离鬼魂的更多相关文章

  1. [LeetCode] Escape The Ghosts 逃离鬼魂

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is (ta ...

  2. LeetCode 789. Escape The Ghosts

    题目链接:https://leetcode.com/problems/escape-the-ghosts/description/ You are playing a simplified Pacma ...

  3. LC 789. Escape The Ghosts

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is(tar ...

  4. 【LeetCode】789. Escape The Ghosts 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  5. 789. Escape The Ghosts

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is (ta ...

  6. 73th LeetCode Weekly Contest Escape The Ghosts

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is(tar ...

  7. [Swift]LeetCode789. 逃脱阻碍者 | Escape The Ghosts

    You are playing a simplified Pacman game. You start at the point (0, 0), and your destination is (ta ...

  8. Java实现 LeetCode 789 逃脱阻碍者(曼哈顿距离)

    789. 逃脱阻碍者 你在进行一个简化版的吃豆人游戏.你从 (0, 0) 点开始出发,你的目的地是 (target[0], target[1]) .地图上有一些阻碍者,第 i 个阻碍者从 (ghost ...

  9. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

随机推荐

  1. LibLog 类库 分析

    前期思考: Microsoft.Logging 是否可用? 是否需要提供默认的 Logger 实现? 不需要.1,用户自己开启日志功能,设置开启属性,即可打印出相应的日志. LibLog 类库分析: ...

  2. Mysql 二进制日志备份还原

    Mysql 二进制日志备份还原 一.开启二进制日志 1.进入配置文件[mysqld]下添加配置 方案一 vim /etc/my.cnf log-bin = /usr/local/mysql/logs/ ...

  3. Mybatis传递多个参数的几种方式

    顺序传参法 public User selectUser(String name, int deptId); <select id="selectUser" resultMa ...

  4. A Pattern Language for Parallel Programming

    The pattern language is organized into four design spaces.  Generally one starts at the top in the F ...

  5. C# iText split PDF C# 拆分PDF

    Nuget install iText7 using iText.Kernel.Pdf; using System.Linq; using System.Text; using System.Thre ...

  6. 软件设计师14-UML建模

    UML图 用例图 用例图:参与者.用例 用例之间的关系:包含关系.扩展关系.泛化关系. 用例的包含关系:查询数据外借信息包含用户登录. 用例的扩展关系:修改之前要先查询,则修改信息包含查询信息用例 类 ...

  7. maven 学习---生成基于Maven的项目文档站点

    在Maven中,可以使用“mvn site”,为您的项目信息生成文档站点. mvn site 生成的网站是在项目的“target/site”文件夹中. mvn site 示例 请参见通过“mvn si ...

  8. block注意事项

    1.block的声明和注意事项 #import "ZYViewController.h" @interface ZYViewController () @end /*用typede ...

  9. Spring Cloud Netflix之Eureka Clients服务提供者

    之前一章我们介绍了如何搭建Eureka Server,这一章,我们介绍如何搭建服务提供者. Eureka Clients介绍 服务的提供者,通过发送REST请求,将自己注册到注册中心(在高可用注册中心 ...

  10. [20190509]rman备份的疑问5.txt

    [20190509]rman备份的疑问5.txt --//别人跟我提到的rman备份问题,我开始以为是assm与mssm的问题,实际测试情况不是.--//开始备份时生成的备份集文件很大,以后会回缩(对 ...