基于tensorflow的简单鼠标键盘识别
import cv2 as cv
import tensorflow as tf
import numpy as np
import random ##以下为数据预处理,分类为cata,总共样本为cata*num_batch,总共图像为cata*num_img
cata=2 #需要分的类别
num_img=49 #图像个数
#该函数返回x与y,输入批量,产生cata*num_batch
def XANDY(num_batch): x_mouse=np.zeros([num_batch,500,500,1]) #保存鼠标图片矩阵
x_keyboard=np.zeros([num_batch,500,500,1]) #保存键盘图片矩阵
temp_mouse=random.sample(range(0,num_img),num_batch)
temp_keyboard=random.sample(range(0,num_img),num_batch)
for i in range(num_batch):
img_mouse1 = cv.imread('C:\\Users\\HHQ\\Desktop\\tangjun\\mouse\\data_mouse\\'+str(temp_mouse[i])+'.PNG', cv.IMREAD_GRAYSCALE)
img_mouse=cv.resize(img_mouse1,(500,500))
x_mouse[i,:,:,0]=img_mouse
img_keyboard1 = cv.imread('C:\\Users\\HHQ\\Desktop\\tangjun\\mouse\\data_keyboard\\'+str(temp_keyboard [i])+'.bmp', cv.IMREAD_GRAYSCALE)
img_keyboard = cv.resize(img_keyboard1, (500, 500))
x_keyboard [i,:,:,0] = img_keyboard xx=np.vstack((x_mouse,x_keyboard))
#表签中0表示鼠标,1表示键盘
y_0=np.zeros([num_batch,1])
y_1=np.ones([num_batch,1])
y_mouse=np.hstack((y_1,y_0))
y_keyboard=np.hstack((y_0,y_1))
yy_=np.vstack((y_mouse,y_keyboard)) #标签为二维数组,行保存样本数量,列保存分类
return xx,yy_ x=tf.placeholder(dtype=tf.float32,shape=[None ,500,500,1])
y_=tf.placeholder(dtype=tf.float32,shape=[None,cata])
#建立卷积
#第一层卷积
W_cov1=tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1),dtype=tf.float32)
B_cov1=tf.Variable(tf.truncated_normal([32],stddev=0.1),dtype=tf.float32)
A_cov1=tf.nn.relu(tf.nn.conv2d(x,W_cov1,strides=[1,1,1,1],padding='SAME')+B_cov1)
P_cov1=tf.nn.max_pool(A_cov1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='VALID')
#得到250*250*32维度的图像 #第二层卷积
W_cov2=tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1),dtype=tf.float32)
B_cov2=tf.Variable(tf.truncated_normal([64],stddev=0.1),dtype=tf.float32)
A_cov2=tf.nn.relu(tf.nn.conv2d(P_cov1,W_cov2,strides=[1,1,1,1],padding='SAME')+B_cov2)
# #第三层卷积
# W_cov3=tf.Variable(tf.truncated_normal()) # 建立全连接层,识别2物体
w=tf.Variable(tf.zeros([250*250*64,cata]),dtype= tf.float32)
b=tf.Variable(tf.zeros([cata]),dtype=tf.float32)
x_reshape=tf.reshape(A_cov2,[-1,250*250*64])
y=tf.matmul(x_reshape,w)+b #定义交叉熵,为了定义损失函数
loss=tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
# loss=-tf.reduce_mean(y_*tf.log(y))
#定义优化器
# train=tf.train.GradientDescentOptimizer(0.001).minimize(loss)
# train=tf.train.AdagradDAOptimizer(0.01).minimize(loss)
train=tf.train.AdamOptimizer(0.001).minimize(loss)
#定义预测准确率
predict1=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
predict=tf.reduce_mean(tf.cast(predict1,tf.float32)) init=tf.initialize_all_variables()
sess=tf.Session() sess.run(init)
x_pr,y_pr=XANDY(40) for i in range(30):
x_ba,y_ba=XANDY(15)
sess.run(train,feed_dict={x:x_ba,y_:y_ba})
accuracy=sess.run(predict, feed_dict={x: x_pr, y_: y_pr})
print('训练步骤: %d , 训练精度:%g' %(i,accuracy))
基于tensorflow的简单鼠标键盘识别的更多相关文章
- 基于TensorFlow的简单验证码识别
TensorFlow 可以用来实现验证码识别的过程,这里识别的验证码是图形验证码,首先用标注好的数据来训练一个模型,然后再用模型来实现这个验证码的识别. 生成验证码 首先生成验证码,这里使用 Pyth ...
- 基于tensorflow的MNIST手写识别
这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环.我也是! 这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟.在 ...
- 个基于TensorFlow的简单故事生成案例:带你了解LSTM
https://medium.com/towards-data-science/lstm-by-example-using-tensorflow-feb0c1968537 在深度学习中,循环神经网络( ...
- 深度学习(五)基于tensorflow实现简单卷积神经网络Lenet5
原文作者:aircraft 原文地址:https://www.cnblogs.com/DOMLX/p/8954892.html 参考博客:https://blog.csdn.net/u01287127 ...
- 基于TensorFlow的手写中文识别(版本一)
具体效果实现: 第一次由于设备问题所以只训练了是一些个简单的字: 第二选了23个字训练了3000在字迹清晰下能够识别: 类似于默,鼠,鼓,这类文字也能识别,由于训练数据的问题,在测试的时候应尽量写在正 ...
- 基于tensorflow的简单线性回归模型
#!/usr/local/bin/python3 ##ljj [1] ##linear regression model import tensorflow as tf import matplotl ...
- 基于tensorflow实现mnist手写识别 (多层神经网络)
标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...
- C#简单鼠标键盘钩子KMHook
简介:由三个文件构成Pinvo.cs.KeyboardHook.cs.MouseHook.cs Pinvo.cs 是KeyboardHook与MouseHook需要的一些常量消息的定义 Keyboar ...
- 基于TensorFlow的MNIST手写数字识别-初级
一:MNIST数据集 下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...
随机推荐
- PacMan 03——追踪玩家
版权申明: 本文原创首发于以下网站: 博客园『优梦创客』的空间:https://www.cnblogs.com/raymondking123 优梦创客的官方博客:https://91make.top ...
- Codeforces 749E: Inversions After Shuffle
题目传送门:CF749E. 记一道傻逼计数题. 题意简述: 给一个 \(1\) 到 \(n\) 的排列,随机选取区间 \([l,r]\) 随机打乱区间内的元素,问打乱后的整个序列的逆序数期望. 题解: ...
- github1:workq
https://github.com/taf2/workq https://github.com/erez-strauss/lockfree_mpmc_queue 多生产者 多消费者 队列 < ...
- 小学四则运算口算练习app---No.1
因为对app不是很了解,对环境的配置也不是很舒心,今天主要配置了环境,了解了一些相关app的简单操作以及安卓stdiuo的使用!如下: 我自己连接的自己的手机(还是不要拿自己的手机做测试哦!模拟器虽然 ...
- 【myBatis】java.lang.IllegalArgumentException: No enum constant org.apache.ibatis.type.JdbcType.NUMBE
可能#{current_date, jdbcType=VARCHAR}中的VARCHAR类型不对
- 微信(十一) 使用调试助手申请设备ID和报备流程
以下流程模拟了一个设备,从微信硬件申请一个产品IP,对此ID进行报备生效,查询自己的绑定主人,给绑定主人发送消息的一系列http请求流程. 1 获取微信密钥 下面需要在公众号设备电脑IP白名单的电脑才 ...
- Linux中关于samba的几个问题
一.用smbclient命令登录成功但看不了文件 原因:SELinux的阻挡 解决:1.关闭SELinux : setenforce 0 (临时生效,重启后失效) 或vi /etc/sysco ...
- three.js 离线API
- nuxtjs如何在单独的js文件中引入store和router
nuxtjs里面集成vuex的创建方式改变了,并且官方不建议以导出Vuex实例的方式创建store,并且会在nuxt3里面删除.这样就会存在一个问题,我怎么像普通vue spa项目一样直接 impor ...
- Docker整合dockerfly实现UI界面管理(单机版)
一.搜索镜像 docker search dockerfly 二.根据镜像使用排名(一般情况下拉取使用率最高的镜像名),我这里使用的是阿里云镜像地址 docker pull registry.cn-h ...