Fashion MNIST

https://www.kaggle.com/zalando-research/fashionmnist

Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.

The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. "If it doesn't work on MNIST, it won't work at all", they said. "Well, if it does work on MNIST, it may still fail on others."

Zalando seeks to replace the original MNIST dataset

Code

https://github.com/fanqingsong/code-snippet/blob/master/machine_learning/FMNIST/code.py

# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras # Helper libraries
import numpy as np print(tf.__version__) fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] train_images = train_images / 255.0 test_images = test_images / 255.0 model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
]) model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) predictions = model.predict(test_images) print(test_labels[0]) print(np.argmax(predictions[0]))

run

root@DESKTOP-OGSLB14:~/mine/code-snippet/machine_learning/FMNIST#
root@DESKTOP-OGSLB14:~/mine/code-snippet/machine_learning/FMNIST# python code.py
1.14.0
WARNING: Logging before flag parsing goes to stderr.
W0816 23:26:49.741352 140630311962432 deprecation.py:506] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/init_ops.py:1251: calling __init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
W0816 23:26:49.977197 140630311962432 deprecation_wrapper.py:119] From code.py:33: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.

2019-08-16 23:26:50.289949: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-08-16 23:26:50.684455: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1992000000 Hz
2019-08-16 23:26:50.686887: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7fffe64d99e0 executing computations on platform Host. Devices:
2019-08-16 23:26:50.686967: I tensorflow/compiler/xla/service/service.cc:175]   StreamExecutor device (0): <undefined>, <undefined>
2019-08-16 23:26:50.958569: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1412] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set.  If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU.  To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.
Epoch 1/5
60000/60000 [==============================] - 3s 50us/sample - loss: 0.4992 - acc: 0.8240
Epoch 2/5
60000/60000 [==============================] - 2s 40us/sample - loss: 0.3758 - acc: 0.8650
Epoch 3/5
60000/60000 [==============================] - 3s 42us/sample - loss: 0.3382 - acc: 0.8770
Epoch 4/5
60000/60000 [==============================] - 2s 41us/sample - loss: 0.3135 - acc: 0.8854
Epoch 5/5
60000/60000 [==============================] - 3s 42us/sample - loss: 0.2953 - acc: 0.8922
10000/10000 [==============================] - 0s 25us/sample - loss: 0.3533 - acc: 0.8715
('Test accuracy:', 0.8715)
9
9
root@DESKTOP-OGSLB14:~/mine/code-snippet/machine_learning/FMNIST#

Reference

https://github.com/MachineIntellect/DeepLearner/blob/master/basic_classification.ipynb

https://tensorflow.google.cn/beta/guide/data

fashion MNIST识别(Tensorflow + Keras + NN)的更多相关文章

  1. mnist识别优化——使用新的fashion mnist进行模型训练

    今天通过论坛偶然知道,在mnist之后,还出现了一个旨在代替经典mnist数据集的Fashion MNIST,同mnist一样,它也是被用作深度学习程序的“hello world”,而且也是由70k张 ...

  2. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  3. 100天搞定机器学习|day39 Tensorflow Keras手写数字识别

    提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...

  4. 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗

    100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...

  5. Mnist手写数字识别 Tensorflow

    Mnist手写数字识别 Tensorflow 任务目标 了解mnist数据集 搭建和测试模型 编辑环境 操作系统:Win10 python版本:3.6 集成开发环境:pycharm tensorflo ...

  6. 深度学习常用数据集 API(包括 Fashion MNIST)

    基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 ...

  7. 手写数字识别——利用keras高层API快速搭建并优化网络模型

    在<手写数字识别——手动搭建全连接层>一文中,我们通过机器学习的基本公式构建出了一个网络模型,其实现过程毫无疑问是过于复杂了——不得不考虑诸如数据类型匹配.梯度计算.准确度的统计等问题,但 ...

  8. [转] 理解CheckPoint及其在Tensorflow & Keras & Pytorch中的使用

    作者用游戏的暂停与继续聊明白了checkpoint的作用,在三种主流框架中演示实际使用场景,手动点赞. 转自:https://blog.floydhub.com/checkpointing-tutor ...

  9. 【学习总结】win7使用anaconda安装tensorflow+keras

    tips: Keras是一个高层神经网络API(高层意味着会引用封装好的的底层) Keras由纯Python编写而成并基Tensorflow.Theano以及CNTK后端. 故先安装TensorFlo ...

随机推荐

  1. Httpd服务进阶知识-LAMP源码编译安装

    Httpd服务进阶知识-LAMP源码编译安装 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 想必大家都知道,动态资源交给fastcgi程序处理,静态资源依旧由httpd服务器处理  ...

  2. NLP文本分类方法汇总

    模型: FastText TextCNN TextRNN RCNN 分层注意网络(Hierarchical Attention Network) 具有注意的seq2seq模型(seq2seq with ...

  3. Nginx与多版本Php配置

    这次忍住没爆粗口,但真的,通过rpm包,yum安全的php-fpm,让我无言以对. 一个Php程序代码,到处测试,显示的菜单都OK,但独独在正式服务器的php-fpm下,少了很多菜单, 不知道是肿么回 ...

  4. python笔记44-HTTP对外接口sign签名

    前言 一般公司对外的接口都会用到sign签名,对不同的客户提供不同的apikey ,这样可以提高接口请求的安全性,避免被人抓包后乱请求. sign签名是一种很常见的方式 sign签名 签名参数sign ...

  5. python老师博客

    前端基础之HTML http://www.cnblogs.com/yuanchenqi/articles/6835654.html 前端基础之CSS http://www.cnblogs.com/yu ...

  6. maven中jar冲突解决

    Maven中jar包冲突是开发过程中比较常见而又令人头疼的问题,我们需要知道 jar包冲突的原理,才能更好的去解决jar包冲突的问题.本文将从jar包冲突的原理和解决两个方面阐述Maven中jar包冲 ...

  7. param动作

    param动作通常与forword一起使用 <jsp:forword page="目标页面" > <jsp:param value="参数值" ...

  8. list数组排序 Collections 按Date时间降序排列

    @ResponseBody @RequestMapping(value = {"K12", "12"}) public String refurbishLigh ...

  9. Redux的图文模型

    Also these are really nice (from http://slides.com/jenyaterpil/redux-from-twitter-hype-to-production ...

  10. 16-Flutter移动电商实战-切换后页面状态的保持AutomaticKeepAliveClientMixin

    底栏切换每次都重新请求是一件非常恶心的事,flutter 中提供了AutomaticKeepAliveClientMixin 帮我们完成页面状态保存效果. 1.AutomaticKeepAliveCl ...