Fashion MNIST

https://www.kaggle.com/zalando-research/fashionmnist

Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.

The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. "If it doesn't work on MNIST, it won't work at all", they said. "Well, if it does work on MNIST, it may still fail on others."

Zalando seeks to replace the original MNIST dataset

Code

https://github.com/fanqingsong/code-snippet/blob/master/machine_learning/FMNIST/code.py

# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras # Helper libraries
import numpy as np print(tf.__version__) fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] train_images = train_images / 255.0 test_images = test_images / 255.0 model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)
]) model.compile(optimizer=tf.train.AdamOptimizer(),
loss='sparse_categorical_crossentropy',
metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5) test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) predictions = model.predict(test_images) print(test_labels[0]) print(np.argmax(predictions[0]))

run

root@DESKTOP-OGSLB14:~/mine/code-snippet/machine_learning/FMNIST#
root@DESKTOP-OGSLB14:~/mine/code-snippet/machine_learning/FMNIST# python code.py
1.14.0
WARNING: Logging before flag parsing goes to stderr.
W0816 23:26:49.741352 140630311962432 deprecation.py:506] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/init_ops.py:1251: calling __init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
W0816 23:26:49.977197 140630311962432 deprecation_wrapper.py:119] From code.py:33: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.

2019-08-16 23:26:50.289949: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-08-16 23:26:50.684455: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1992000000 Hz
2019-08-16 23:26:50.686887: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7fffe64d99e0 executing computations on platform Host. Devices:
2019-08-16 23:26:50.686967: I tensorflow/compiler/xla/service/service.cc:175]   StreamExecutor device (0): <undefined>, <undefined>
2019-08-16 23:26:50.958569: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1412] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set.  If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU.  To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.
Epoch 1/5
60000/60000 [==============================] - 3s 50us/sample - loss: 0.4992 - acc: 0.8240
Epoch 2/5
60000/60000 [==============================] - 2s 40us/sample - loss: 0.3758 - acc: 0.8650
Epoch 3/5
60000/60000 [==============================] - 3s 42us/sample - loss: 0.3382 - acc: 0.8770
Epoch 4/5
60000/60000 [==============================] - 2s 41us/sample - loss: 0.3135 - acc: 0.8854
Epoch 5/5
60000/60000 [==============================] - 3s 42us/sample - loss: 0.2953 - acc: 0.8922
10000/10000 [==============================] - 0s 25us/sample - loss: 0.3533 - acc: 0.8715
('Test accuracy:', 0.8715)
9
9
root@DESKTOP-OGSLB14:~/mine/code-snippet/machine_learning/FMNIST#

Reference

https://github.com/MachineIntellect/DeepLearner/blob/master/basic_classification.ipynb

https://tensorflow.google.cn/beta/guide/data

fashion MNIST识别(Tensorflow + Keras + NN)的更多相关文章

  1. mnist识别优化——使用新的fashion mnist进行模型训练

    今天通过论坛偶然知道,在mnist之后,还出现了一个旨在代替经典mnist数据集的Fashion MNIST,同mnist一样,它也是被用作深度学习程序的“hello world”,而且也是由70k张 ...

  2. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  3. 100天搞定机器学习|day39 Tensorflow Keras手写数字识别

    提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...

  4. 100天搞定机器学习|day40-42 Tensorflow Keras识别猫狗

    100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0. ...

  5. Mnist手写数字识别 Tensorflow

    Mnist手写数字识别 Tensorflow 任务目标 了解mnist数据集 搭建和测试模型 编辑环境 操作系统:Win10 python版本:3.6 集成开发环境:pycharm tensorflo ...

  6. 深度学习常用数据集 API(包括 Fashion MNIST)

    基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 ...

  7. 手写数字识别——利用keras高层API快速搭建并优化网络模型

    在<手写数字识别——手动搭建全连接层>一文中,我们通过机器学习的基本公式构建出了一个网络模型,其实现过程毫无疑问是过于复杂了——不得不考虑诸如数据类型匹配.梯度计算.准确度的统计等问题,但 ...

  8. [转] 理解CheckPoint及其在Tensorflow & Keras & Pytorch中的使用

    作者用游戏的暂停与继续聊明白了checkpoint的作用,在三种主流框架中演示实际使用场景,手动点赞. 转自:https://blog.floydhub.com/checkpointing-tutor ...

  9. 【学习总结】win7使用anaconda安装tensorflow+keras

    tips: Keras是一个高层神经网络API(高层意味着会引用封装好的的底层) Keras由纯Python编写而成并基Tensorflow.Theano以及CNTK后端. 故先安装TensorFlo ...

随机推荐

  1. Httpd服务入门知识-Httpd服务常见配置案例之修改监听的IP和Port

    Httpd服务入门知识-Httpd服务常见配置案例之修改监听的IP和Port 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.查看默认配置 [root@node101.yinzh ...

  2. SQL注入中的WAF绕过

    1.大小写绕过 这个大家都很熟悉,对于一些太垃圾的WAF效果显著,比如拦截了union,那就使用Union UnIoN等等绕过. 2.简单编码绕过 比如WAF检测关键字,那么我们让他检测不到就可以了. ...

  3. 说说openjdk及G1回收器日志内容详细分析

    谈谈openjdk: 在正式往下学习JVM之前,这里谈谈openjdk这个网站,这个在学习java并发时也用过它来分析过锁的底层实现,如:https://www.cnblogs.com/webor20 ...

  4. jenkins中jmeter项目流程图

  5. Aizu2249-Road Construction-(Dijkstra)

    https://vjudge.net/problem/Aizu-2249 题意:计划图中有n个城市m条路,首都是1号城市,要选一些路去修,让各个城市到首都的路径最短,在路径最短的情况下修路费用最小. ...

  6. Codeforces Round #558 (Div. 2)-Cat Party (Hard Edition)-(前缀和 + 模拟)

    http://codeforces.com/problemset/problem/1163/B2 题意:有n天,每天有一个颜色,截取前x天,随便抽掉一天,使剩下的各个颜色出现的次数相等. 解题,也可以 ...

  7. LeetCode 953. Verifying an Alien Dictionary

    原题链接在这里:https://leetcode.com/problems/verifying-an-alien-dictionary/ 题目: In an alien language, surpr ...

  8. Java验证jwt token

    https://jwt.io/ RS256加密JWT生成.验证 https://blog.csdn.net/u011411069/article/details/79966226 How to loa ...

  9. proxysql 学习二 admin-web 启用

    proxysql 从1.4.4 开始内置了一个简单的http server,可以方便进行状态信息的查看,今天在 尝试通过配置参数以及update global_variables 没有生效,set 也 ...

  10. 彻底理解C++指针

    目录 目录 1 1. 概念 1 1.1. 双指针 1 1.2. 指针数组 1 1.3. 数组指针 1 1.4. 常见指针定义解读 1 2. 区别 2 3. 兼容性 2 4. 为何列数须相等? 2 5. ...