import collections
import math
import os
import random
import zipfile
import numpy as np
import urllib.request as request
import tensorflow as tf url = 'http://mattmahoney.net/dc/' def maybe_download(filename,expected_bytes):
if not os.path.exists(filename):
filename,_ = request.urlretrieve(url+filename,filename)
statinfo = os.stat(filename)
if statinfo.st_size == expected_bytes:
print('Found and verified',filename)
else:
print(statinfo.st_size)
raise Exception('Failed to verify' + filename + '.Can you get to it with a browser?')
return filename filename = maybe_download('text8.zip',31344016) def read_data(filename):
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data words = read_data(filename)
print('Data size',len(words)) vocabulary_size = 50000
def build_dataset(words):
count = [['UNK',-1]]
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
dictionary = dict(zip(list(zip(*count))[0],range(len(list(zip(*count))[0]))))
data = list()
un_count = 0 for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0
un_count += 1
data.append(index)
count[0][1] = un_count
reverse_dictionary = dict(zip(dictionary.values(),dictionary.keys()))
return data,reverse_dictionary,dictionary,count
data,reverse_dictionary,dictionary,count = build_dataset(words)
del words data_index = 0
def generate_batch(batch_size,num_skips,skip_window):
global data_index
assert num_skips <= 2 * skip_window
assert batch_size % num_skips == 0
span = 2 * skip_window + 1
batch = np.ndarray(shape=[batch_size],dtype=np.int32)
labels = np.ndarray(shape=[batch_size,1],dtype=np.int32)
buffer = collections.deque(maxlen=span)
#初始化
for i in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
#移动窗口,获取批量数据
for i in range(batch_size // num_skips):
target = skip_window
avoid_target = [skip_window]
for j in range(num_skips):
while target in avoid_target:
target = np.random.randint(0,span - 1)
avoid_target.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j,0] = buffer[target] buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch,labels batch_size = 128
embedding_size = 128
skip_window = 1
num_skips = 2 valid_size = 16
valid_window = 100
valid_examples = np.random.choice(valid_window,valid_size,replace=False)
num_sampled = 64 with tf.Graph().as_default() as graph:
train_inputs = tf.placeholder(tf.int32,shape=[batch_size])
train_labels = tf.placeholder(tf.int32,shape=[batch_size,1])
valid_dataset = tf.constant(valid_examples,dtype=tf.int32) with tf.device('/cpu:0'):
embeddings = tf.Variable(tf.random_uniform(shape=[vocabulary_size,embedding_size],minval=-1.0,maxval=1.0))
embed = tf.nn.embedding_lookup(embeddings,train_inputs)
nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size,embedding_size],stddev=1.0/math.sqrt(embedding_size)))
nce_bias = tf.Variable(tf.zeros([vocabulary_size])) loss = tf.reduce_mean(tf.nn.nce_loss(weights=nce_weights,biases =nce_bias,labels=train_labels,inputs=embed,num_sampled=num_sampled,num_classes=vocabulary_size))
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings),1,keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,valid_dataset)
similarity = tf.matmul(valid_embeddings,normalized_embeddings,transpose_b=True)
init = tf.global_variables_initializer() num_steps = 100001 with tf.Session(graph=graph) as session:
init.run()
print("initialized") average_loss = 0.0
for step in range(num_steps):
batch_inputs,batch_labels = generate_batch(batch_size,num_skips,skip_window)
feed_dict = {train_inputs:batch_inputs,train_labels:batch_labels} _,loss_val = session.run([optimizer,loss],feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
print("Average loss at step",step,":",average_loss)
average_loss = 0
if step % 10000 == 0:
sim = similarity.eval()
for i in range(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8
nearest = (-sim[i,:]).argsort()[1:top_k+1]
log_str = "Nearest to %s:" % valid_word
for k in range(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = "%s %s," % (log_str,close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()

word2vector的tensorflow代码实现的更多相关文章

  1. tensorflow 代码阅读

    具体实现: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/framework 『深度长文』Tensorflo ...

  2. 关于使用实验室服务器的GPU以及跑上TensorFlow代码

    连接服务器 Windows - XShell XFtp SSH 通过SSH来连接实验室的服务器 使用SSH连接已经不陌生了 github和OS课设都经常使用 目前使用 192.168.7.169 使用 ...

  3. 条件随机场(crf)及tensorflow代码实例

    对于条件随机场的学习,我觉得应该结合HMM模型一起进行对比学习.首先浏览HMM模型:https://www.cnblogs.com/pinking/p/8531405.html 一.定义 条件随机场( ...

  4. 如何高效的学习 TensorFlow 代码? 以及TensorFlow相关的论文

    https://www.zhihu.com/question/41667903 源码分析 http://www.cnblogs.com/yao62995/p/5773578.html 如何贡献Tens ...

  5. Transformer解析与tensorflow代码解读

    本文是针对谷歌Transformer模型的解读,根据我自己的理解顺序记录的. 另外,针对Kyubyong实现的tensorflow代码进行解读,代码地址https://github.com/Kyuby ...

  6. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  7. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  8. 运行TensorFlow代码时报错

    运行TensorFlow代码时报错 错误信息ImportError: libcublas.so.10.0: cannot open shared object file 原因:TensorFlow版本 ...

  9. 利用VGG19实现火灾分类(附tensorflow代码及训练集)

    源码地址 https://github.com/stephen-v/tensorflow_vgg_classify 1. VGG介绍 1.1. VGG模型结构 1.2. VGG19架构 2. 用Ten ...

随机推荐

  1. 《C++ Primer》学习总结;兼论如何使用'书'这种帮助性资料

    6.25~ 6.27,用了3天翻了一遍<C++ Primer>. ▶书的 固有坏处 一句话: 代码比 文字描述 好看多了.————> 直接看习题部分/ 看demo就行了 看文字在描述 ...

  2. javascript Class.method vs Class.prototype.method(类方法和对象方法)

    在stackoverflow上看到一个这样的提问,以下代码有什么区别? Class.method = function () { /* code */ } Class.prototype.method ...

  3. IDEA超级实用的几个快捷键

    最近开始使用IDEA,突然发现的比较的实用的几个快捷键 这些快捷键用的好的话真的可以提升很多效率 还有一些比较简单的快捷键,相信大家都会 Ctrl+X:剪切 Ctrl+C:复制 Ctrl+V:粘贴 C ...

  4. 我碰到的stackoverflow error

    出现这种问题,首先需要检查自己的代码: 要么代码小错误:或者逻辑错误: 如果出现循环调用更要仔细检查: 我的问题: 循环调用:一个实体他有自己的父栏目,含有子栏目的list集合:两者结果映射resul ...

  5. python基础06--文件操作

    1.1 文件操作 1.只读(r,rb)     rb以bytes方式读文件 只写(w,wb) 追加(a,ab) r+ 读写 w+ 写读 a+  追加写读 以什么编码方式储存的文件,就用什么编码方式打开 ...

  6. vue学习整理

    1.webpack+vue自定义路径别名 vue-cli 用的是webpack,也可以使用webpack自定义别名这个功能,自定义别名这个功能当你在多层文件夹嵌套的时候不必一层一层找路径,直接使用自定 ...

  7. selenium 开启开发者工具(F12)

    selenium 开启开发者工具(F12) options = webdriver.ChromeOptions(); options.add_argument("--auto-open-de ...

  8. JavaScript 书写位置

    类似于 CSS 样式,JavaScript 也有三种不同位置的书写方式. 1.写在行内 <input type="button" value="按钮" o ...

  9. getsockopt套接口选项

    1. getsockopt int getsockopt(int sockfd, int level, int optname, void *optval, socklen_t *optlen); i ...

  10. 92. 反转链表 II.反转从位置 m 到 n 的链表。请使用一趟扫描完成反转。

    public ListNode reverseBetween(ListNode head, int m, int n) { ListNode dummy = new ListNode(0); //虚拟 ...