MySQL数据库之互联网常用分库分表方案
一、数据库瓶颈
不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。
1、IO瓶颈
第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。
第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。
2、CPU瓶颈
第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。
第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。
二、分库分表
1、水平分库
- 概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。
- 结果:
- 每个库的结构都一样;
- 每个库的数据都不一样,没有交集;
- 所有库的并集是全量数据;
- 场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。
- 分析:库多了,io和cpu的压力自然可以成倍缓解。
2、水平分表
- 概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。
- 结果:
- 每个表的结构都一样;
- 每个表的数据都不一样,没有交集;
- 所有表的并集是全量数据;
- 场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。
- 分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。
3、垂直分库
- 概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。
- 结果:
- 每个库的结构都不一样;
- 每个库的数据也不一样,没有交集;
- 所有库的并集是全量数据;
- 场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。
- 分析:到这一步,基本上就可以服务化了。例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。
4、垂直分表
- 概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。
- 结果:
- 每个表的结构都不一样;
- 每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据;
- 所有表的并集是全量数据;
- 场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。
- 分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。
三、分库分表工具
- sharding-sphere:jar,前身是sharding-jdbc;
TDDL:jar,Taobao Distribute Data Layer;
- Mycat:中间件。
注:工具的利弊,请自行调研,官网和社区优先。
四、分库分表步骤
根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。
五、分库分表问题
1、非partition key的查询问题(水平分库分表,拆分策略为常用的hash法)
- 端上除了partition key只有一个非partition key作为条件查询
- 映射法
- 基因法
注:写入时,基因法生成user_id,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据user_id查询时可直接取模路由到对应的分库或分表。根据user_name查询时,先通过user_name_code生成函数生成user_name_code再对其取模路由到对应的分库或分表。id生成常用snowflake算法。
- 映射法
- 端上除了partition key不止一个非partition key作为条件查询
- 映射法
- 冗余法
注:按照order_id或buyer_id查询时路由到db_o_buyer库中,按照seller_id查询时路由到db_o_seller库中。感觉有点本末倒置!有其他好的办法吗?改变技术栈呢?
- 映射法
- 后台除了partition key还有各种非partition key组合条件查询
- NoSQL法
- 冗余法
- NoSQL法
2、非partition key跨库跨表分页查询问题(水平分库分表,拆分策略为常用的hash法)
注:用NoSQL法解决(ES等)。
3、扩容问题(水平分库分表,拆分策略为常用的hash法)
- 水平扩容库(升级从库法)
注:扩容是成倍的。
- 水平扩容表(双写迁移法)
第一步:(同步双写)应用配置双写,部署;
第二步:(同步双写)将老库中的老数据复制到新库中;
第三步:(同步双写)以老库为准校对新库中的老数据;
第四步:(同步双写)应用去掉双写,部署;
注:双写是通用方案。
六、分库分表总结
- 分库分表,首先得知道瓶颈在哪里,然后才能合理地拆分(分库还是分表?水平还是垂直?分几个?)。且不可为了分库分表而拆分。
- 选key很重要,既要考虑到拆分均匀,也要考虑到非partition key的查询。
- 只要能满足需求,拆分规则越简单越好。
七、分库分表示例
示例GitHub地址:https://github.com/littlecharacter4s/study-sharding
MySQL数据库之互联网常用分库分表方案的更多相关文章
- MYSQL数据库数据拆分之分库分表总结
数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的 ...
- <转>MYSQL数据库数据拆分之分库分表总结
数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的 ...
- MYSQL数据库数据拆分之分库分表总结 (转)
数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数 ...
- MySQL:互联网公司常用分库分表方案汇总!
转载别人 一.数据库瓶颈 不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值.在业务Service来看就是,可用数据库连接少甚至无连接可用 ...
- MySQL:互联网公司常用分库分表方案汇总!
一.数据库瓶颈 不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值.在业务Service来看就是,可用数据库连接少甚至无连接可用.接下来就 ...
- MySQL数据库之互联网常用架构方案
一.数据库架构原则 高可用 高性能 一致性 扩展性 二.常见的架构方案 方案一:主备架构,只有主库提供读写服务,备库冗余作故障转移用 jdbc:mysql://vip:3306/xxdb 高可用分析: ...
- 基于Mysql数据库亿级数据下的分库分表方案
移动互联网时代,海量的用户数据每天都在产生,基于用户使用数据的用户行为分析等这样的分析,都需要依靠数据都统计和分析,当数据量小时,问题没有暴露出来,数据库方面的优化显得不太重要,一旦数据量越来越大时, ...
- mysql 数据库 分表后 怎么进行分页查询?Mysql分库分表方案?
Mysql分库分表方案 1.为什么要分表: 当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间. m ...
- 【分库、分表】MySQL分库分表方案
一.Mysql分库分表方案 1.为什么要分表: 当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间. ...
随机推荐
- [Web] 取消Promise
转载自 为Promise插上可取消的翅膀 const makeCancelable = (promise) => { let hasCanceled_ = false; const wrappe ...
- javascript prototype理解
如图比较好的阐述了prototype和__proto__ 简单的可以这么理解: 狗类A( function foo()),狗类A的模板描述:A.模板 (foo.prototype)是一个对象objec ...
- pandas.merge数据连接合并
https://study.163.com/course/courseMain.htm?courseId=1006383008&share=2&shareId=400000000398 ...
- 使用JSP的fmt标签实现国际化支持 - smart-framework ; smart-plugin-i18n
使用JSP的fmt标签实现国际化支持 Smart-framework框架使用smart-plugin-i18n插件来完成国际化处理,原理相同,使用过滤器进行参数设置. ============== ...
- 【转】Sql Server查看所有数据库名,表名,字段名(SQL语句)
-- 获取所有数据库名 select * from master..SysDatabases; -- 获取hotline数据库中所有表名 select name from hotline..SysOb ...
- 查找算法(5)--Tree table lookup--树表查找
1.树表查找 (1) 最简单的树表查找算法——二叉树查找算法. [1]基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适 ...
- leetcode No.242 有效的字母异位词 valid-anagram (Python3实现)
题目描述 给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词. 示例 1: 输入: s = "anagram", t = "nagaram&q ...
- Windows 10 安装MySQL
1.下载MySQL官网:https://www.mysql.com/ 进入官网点击DOWNLOADS ->Community->DOWNLOADS (下载社区版) 2.安装MySQL 将下 ...
- pytorch占用过多CPU问题
Linux下,使用pytorch有时候会出现占用过多CPU资源的问题(占用过多线程),解决方法如下: 法一.torch.set_num_threads(int thread) (亲测比较有效) 法二. ...
- redis相关文章
redis主从复制相关文章 <redis如何实现主从数据的同步> <一篇文章让你明白Redis主从同步> <redis-sentinel的理解实 ...