Sigmoid函数与Softmax函数的理解
1. Sigmod 函数
1.1 函数性质以及优点
其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线)。

其中z是一个线性组合,比如z可以等于:b + w1*x1 + w2*x2。通过代入很大的正数或很小的负数到g(z)函数中可知,其结果趋近于0或1
A logistic function or logistic curve is a common “S” shape (sigmoid curve).
也就是说,sigmoid函数的功能是相当于把一个实数压缩至0到1之间。当z是非常大的正数时,g(z)会趋近于1,而z是非常小的负数时,则g(z)会趋近于0

压缩至0到1有何用处呢?用处是这样便可以把激活函数看作一种“分类的概率”,比如激活函数的输出为0.9的话便可以解释为90%的概率为正样本。
优点:
1、Sigmoid函数的输出在(0,1)之间,输出范围有限,优化稳定,可以用作输出层。
2、连续函数,便于求导。
1.2 函数缺点
sigmoid也具有自身的缺陷。
第二点,激活函数的偏移现象。sigmoid函数的输出值均大于0,使得输出不是0的均值,这会导致后一层的神经元将得到上一层非0均值的信号作为输入,这会对梯度产生影响。。
第三点,计算复杂度高,因为sigmoid函数是指数形式。
1.3 Sigmod函数求导
sigmod 求导过程很简单,可以手动推导。
2. Softmax 函数
2.1 Softmax函数表达式与性质
softmax函数,又称归一化指数函数。它是二分类函数sigmoid在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。下图展示了softmax的计算方法:
下面这张图便于理解:
softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们就可以将它理解成概率,在最后选取输出结点的时候,我们就可以选取概率最大(也就是值对应最大的)结点,作为我们的预测目标!
由于Softmax函数先拉大了输入向量元素之间的差异(通过指数函数),然后才归一化为一个概率分布,在应用到分类问题时,它使得各个类别的概率差异比较显著,最大值产生的概率更接近1,这样输出分布的形式更接近真实分布。
2.2Softmax函数的解释
Softmax可以由三个不同的角度来解释。从不同角度来看softmax函数,可以对其应用场景有更深刻的理解。
2.2.1 是arg max的一种平滑近似
softmax可以当作arg max的一种平滑近似,与arg max操作中暴力地选出一个最大值(产生一个one-hot向量)不同,softmax将这种输出作了一定的平滑,即将one-hot输出中最大值对应的1按输入元素值的大小分配给其他位置。
2.2.2 归一化产生一个概率分布
Softmax函数的输出符合指数分布族的基本形式
其中 。
不难理解,softmax将输入向量归一化映射到一个类别概率分布,即 个类别上的概率分布(前文也有提到)。这也是为什么在深度学习中常常将softmax作为MLP的最后一层,并配合以交叉熵损失函数(对分布间差异的一种度量)。
2.2.3 产生概率无向图的联合概率
从概率图模型的角度来看,softmax的这种形式可以理解为一个概率无向图上的联合概率。因此你会发现,条件最大熵模型与softmax回归模型实际上是一致的,诸如这样的例子还有很多。由于概率图模型很大程度上借用了一些热力学系统的理论,因此也可以从物理系统的角度赋予softmax一定的内涵。
3. 总结
• 如果模型输出为非互斥类别,且可以同时选择多个类别,则采用Sigmoid函数计算该网络的原始输出值。
• 如果模型输出为互斥类别,且只能选择一个类别,则采用Softmax函数计算该网络的原始输出值。
Sigmoid函数与Softmax函数的理解的更多相关文章
- sigmoid 函数与 softmax 函数
sigmoid 函数与 softmax 函数 1. sigmoid 函数 sigmoid 函数又称:logistic函数,逻辑斯谛函数.其几何形状即为一条sigmoid曲线. lo ...
- [Machine Learning] logistic函数和softmax函数
简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...
- [机器学习入门篇]-Logistic函数与Softmax函数
1.Logistic函数 在维基百科中,对logistic函数这样介绍道: A logistic function or logistic curve is a common "S" ...
- 深度学习基础系列(四)| 理解softmax函数
深度学习最终目的表现为解决分类或回归问题.在现实应用中,输出层我们大多采用softmax或sigmoid函数来输出分类概率值,其中二元分类可以应用sigmoid函数. 而在多元分类的问题中,我们默认采 ...
- softmax函数详解
答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...
- Softmax函数详解与推导
一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...
- [转]softmax函数详解
答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...
- 深度学习(四) softmax函数
softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素 ...
- Softmax函数与交叉熵
在Logistic regression二分类问题中,我们可以使用sigmoid函数将输入Wx+b映射到(0,1)区间中,从而得到属于某个类别的概率.将这个问题进行泛化,推广到多分类问题中,我们可以使 ...
随机推荐
- fft.ntt,生成函数,各种数和各种反演
前置知识: 一,导数 倒数其实就是函数的斜率函数 设D[f(x)]表示f(x)的导数,则满足 $$1,D[f(x)]=\lim\limits_{\delta x->\infty}\frac{f( ...
- Function.prototype.call.bind
在JavaScript中借用方法 在JavaScript中,有时候需要在一个不同的对象上重用一个函数,而不是在定义它的对象或者原型中.通过使用call(),applay()和bind(),我们可以很方 ...
- UDF——处理二维网格的利器:Boost.Geometry库
本文编译工具:VC++ UDF Studio 该插件可以直接在Visual Studio中一键编译.加载.调试UDF源码,极大提高编写排错效率,且支持C++,MFC,Windows API和第三方库, ...
- # Leetcode 14:Longest Common Prefix 最长公共前缀
公众号:爱写bug Write a function to find the longest common prefix string amongst an array of strings. If ...
- 《Interest Rate Risk Modeling》阅读笔记——第五章:久期向量模型
目录 第五章:久期向量模型 思维导图 久期向量的推导 久期向量 广义久期向量 一些想法 第五章:久期向量模型 思维导图 久期向量的推导 \[ V_0 = \sum_{t=t_1}^{t_n} CF_t ...
- 安卓 apk 嵌入H5页面只显示部分
安卓 apk 嵌入H5页面只显示部分(有空白页出现) 解决方案 没有加载的是js部分,需要在安卓那边加上一串代码 webView.getSetting().setDomStorageEnabled(t ...
- SpringMVC参数传递方案
SpringMVC参数传递方案 登录 @PostMapping("/login") @ResponseBody public Map login(String username, ...
- openresty 报错:lua entry thread aborted: runtime error
[1]问题现象 (1)本地openresty系统 (2)报错信息 2019/09/10 08:13:55 [error] 2385#2385: *4 lua entry thread aborted: ...
- WPF 精修篇 WPF嵌入Winfrom控件
原文:WPF 精修篇 WPF嵌入Winfrom控件 先增加DLL 支持 使用 WindowsFormsHost 来加载Forms的控件 引用命名空间 xmlns:forms="clr-na ...
- 在ASP.NET Web API 2中使用Owin基于Token令牌的身份验证
基于令牌的身份验证 基于令牌的身份验证主要区别于以前常用的常用的基于cookie的身份验证,基于cookie的身份验证在B/S架构中使用比较多,但是在Web Api中因其特殊性,基于cookie的身份 ...