传送门


如果在\(0\)以下之后仍然会减分,那么最后的结果一定是\(N-M\)。

注意到如果在Alice分数为\(0\)时继续输,那么就相当于减少了一次输的次数。也就是说如果说在总的博弈过程中,Alice在分数等于\(0\)时输了\(x\)次,那么最后的结果就是\(N-M+x\)。

不妨考虑一个序列\(a_i\),如果\(a_i = 1\)表示Alice第\(i\)局输了,\(a_i = -1\)表示第\(i\)局赢了,那么不难发现\(x =\)序列\(a_i\)的最大前缀和。不妨设\(max_a\)表示序列\(a\)的最大前缀和。然后可以发现序列\(a_i\)与格路问题有一些相似:从\((0,0)\)开始走路,如果\(a_i = 1\)则第\(i\)步向上走一格,否则向右走一格,那么一个满足条件的序列\(a\)是一个从\((0,0)\)到\((N,M)\)的路径,而\(max_a\)等于这条路径上所有的点中\(y-x\)的最大值。

对于一组询问,我们要求的就是\(Ans = \sum\limits_{t} max_t\),当\(N > M\)时\(Ans = \sum\limits_{i=1}^M \sum\limits_{t} [max_t \geq i]\),当\(N \leq M\)时\(Ans = M - N + \sum\limits_{i = M - N + 1} ^ M \sum\limits_{t} [max_t \geq i]\)。

对于\(i \in [\max(M - N , 0) + 1 , M]\),\(\sum\limits_t [max_t \geq i]\)相当于从\((0,0)\)到\((N,M)\)必须经过\(y = x + i\)的路径条数,这是格路问题的经典问题,不难得到答案是\(\binom{N+M}{M - i}\)。

那么当\(N > M\)时\(Ans = \sum\limits_{i=1}^M \binom{N + M}{M - i} = \sum\limits_{i=0}^{M - 1} \binom{N + M}{i}\),当\(N \leq M\)时\(Ans = M - N + \sum\limits_{i=0}^{N - 1} \binom{N + M}{i}\)。

那么如果我们可以快速求出\(f(x,y) = \sum\limits_{i=0}^x \binom{y}{i}\)就可以快速求解。

注意到这是一个二元组询问,似乎不能直接做,不妨考虑莫队。那么我们需要在知道\(f(x,y)\)时\(O(1)\)求出\(f(x,y \pm 1)\)以及\(f(x \pm 1,y)\)。后者可以直接做,对于前者可以使用\(\binom{y}{x} = \binom{y - 1}{x} + \binom{y - 1}{x - 1}\)得到一种\(O(1)\)的转移方法。

代码

LOJ6300 博弈论与概率统计 组合、莫队的更多相关文章

  1. 【HDU 5145】 NPY and girls(组合+莫队)

    pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...

  2. loj6300 「CodePlus 2018 3 月赛」博弈论与概率统计

    link 题意: A和B玩游戏,每轮A赢的概率为p.现在有T组询问,已知A赢了n轮输了m轮,没有平局,赢一局A得分+1,输一局得分-1,问A得分期望值? $n+m,T\leq 2.5\times 10 ...

  3. LOJ6300 BZOJ5283 [CodePlus 2018 3 月赛]博弈论与概率统计

    一道好题!很久以前就想做了,咕到了现在,讲第二遍了才做. 首先我们观察到$p$是没有用的 因为赢的次数一定 那么每一种合法序列出现的概率均为$p^n*(1-p)^m$ 是均等的 我们可以不看它了 然后 ...

  4. bzoj 5283: [CodePlus 2018 3 月赛]博弈论与概率统计

    Description 大家的好朋友小 L 来到了博弈的世界.Alice 和 Bob 在玩一个双人游戏.每一轮中,Alice 有 p 的概率胜利,1 -p 的概率失败,不会出现平局.双方初始时各有 0 ...

  5. [CodePlus 2018 3 月赛] 博弈论与概率统计

    link 题意简述 小 $A$ 与小 $B$ 在玩游戏,已知小 $A$ 赢 $n$ 局,小 $B$ 赢 $m$ 局,没有平局情况,且赢加一分,输减一分,而若只有 $0$ 分仍输不扣分. 已知小 $A$ ...

  6. [Code+#3]博弈论与概率统计

    题目 记得曾经和稳稳比谁后抄这个题的题解,看来是我输了 不难发现\(p\)是给着玩的,只需要求一个总情况数除以\(\binom{n+m}{n}\)就好了 记\(i\)为无效的失败次数,即\(\rm A ...

  7. BZOJ2038 (莫队)

    BZOJ2038: 小Z的袜子 Problem : N只袜子排成一排,每次询问一个区间内的袜子种随机拿两只袜子颜色相同的概率. Solution : 莫队算法真的是简单易懂又暴力. 莫队算法用来离线处 ...

  8. 【BZOJ】2038: [2009国家集训队]小Z的袜子(hose)(组合计数+概率+莫队算法+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2038 学了下莫队,挺神的orzzzz 首先推公式的话很简单吧... 看的题解是从http://for ...

  9. hdu_5145_NPY and girls(莫队算法+组合)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5145 题意:给你n,m,共有n个女孩,标号为1—n,n个数xi表示第ith个女孩在第xi个教室,然后下 ...

随机推荐

  1. Bzoj 1927: [Sdoi2010]星际竞速(网络流)

    1927: [Sdoi2010]星际竞速 Time Limit: 20 Sec Memory Limit: 259 MB Description 10年一度的银河系赛车大赛又要开始了.作为全银河最盛大 ...

  2. 洛谷P1854 花店橱窗布置

    题目 DP,直接递推比记忆化搜索简单. 定义状态\(dp[i][j]\)为前i行最后一个选择第i行第j个数所得到最大值. 易得状态转移方程 \(dp[i][j]=max(dp[i-1][k]+a[i] ...

  3. BMP图像信息隐藏

    图像隐写算法LSB—Least Significant Bits,又称最不显著位.LSB算法就是将秘密信息嵌入到载体图像像素值得最低有效位,改变这一位置对载体图像的品质影响最小. 原理如下: 以实验用 ...

  4. 【Java 8】巧用Optional之优雅规避NPE问题

    避之不及的 NullPointerException NPE : NullPointerException 空指针异常是最常见的Java异常之一,抛出NPE错误不是用户操作的错误,而是开发人员的错误, ...

  5. 再谈CAP

    CAP定理设计者Eric Brewer作为Google基础设施副总裁在时隔二十年后重谈CAP定律. Eric Brewer目前正在推动Kubernetes和容器建设,在这篇采访中:Google sys ...

  6. SymPy解方程的实现

    https://www.cnblogs.com/zgyc/p/6277562.html SymPy完全是用Python写的,并不需要外部的库 原理: 单纯用语言内置的运算与变量解决的是,由值求结果.如 ...

  7. # advanced packaging

    目录 advanced packaging ASM NEXX ASMPT完成收購NEXX 準備就緒迎接先進半導體封裝之高速增長 Intro Bumping 产品供应 晶圆溅镀– Apollo 300 ...

  8. odoo开发笔记 -- 异常处理in resolve_deps field = model

    场景描述: 更新代码,重启服务服务后,odoo后台报错,提示关键字:in resolve_deps field = model._fields[fname]  KeyError: 'entry_id' ...

  9. pytorch visdom可视化工具学习—3-命令行操作使用经验

    在使用过程中一直以为要在哪个指定的environment下(即参数env)绘制内容,就必须在使用时声明 比如如果不声明,默认的就是在'main'环境下,端口为8097: viz = visdom.Vi ...

  10. ELK - logstash 多个配置文件及模板的使用

    目录 - 前言 - 多配置文件的实现方式 - 为logstash 增加模板 - 将 logstash 作为服务启动 1. 前言 在使用 logstash 编写多个配置文件,写入到 elasticsea ...