leetcode动态规划笔记二
动态规划
题目分类
矩阵型DP
- Unique Paths II : 矩阵型DP,求所有方法总数
- Minimum Path Sum:矩阵型,求最大最小值
- Triangle : 矩阵型,求最大最小值
- Maximum Square :矩阵型,求最大最小值
- Range Sum Query 2D - Immutable : 求和
Unique Paths II : 矩阵型DP,求所有方法总数
方法一:自顶向下
递归法,time limited
class Solution {
int helper(int[][] g, int x, int y){
int top = 0, left = 0;
if(g[x][y] == 1) return 0;
if(x == 0 && y == 0) return 1;
if(x > 0){
top = helper(g, x - 1, y);
}
if(y > 0){
left = helper(g, x, y - 1);
}
return top + left;
}
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
return helper(obstacleGrid, obstacleGrid.length - 1, obstacleGrid[0].length -1);
}
}
方法一:自顶向下
递归法 + memo ac
class Solution {
Map<Long, Integer> m = new HashMap<>();
int helper(int[][] g, int x, int y){
int top = 0, left = 0;
if(g[x][y] == 1) return 0;
if(x == 0 && y == 0) return 1;
long key = ((long)x) << 32 | y; // long key = x << 32 | y; 错误
if(m.containsKey(key)) return m.get(key);
if(x > 0){
top = helper(g, x - 1, y);
}
if(y > 0){
left = helper(g, x, y - 1);
}
m.put(key, top + left);
return top + left;
}
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
return helper(obstacleGrid, obstacleGrid.length - 1, obstacleGrid[0].length -1);
}
}
方法三:自底向上
递推 + memo
这里用了二维memo,其实状态转移中,当前step只与上一step有关系,只用一维memo就可以了。
class Solution {
public int uniquePathsWithObstacles(int[][] g) {
if(g.length == 0) return 0;
int[][] ps = new int[g.length][g[0].length];
boolean obstacle = false;
for(int i = 0; i < g.length; i ++){
if(g[i][0] == 1){
obstacle = true;
}
ps[i][0] = obstacle ? 0 : 1;
}
obstacle = false;
for(int i = 0; i < g[0].length; i ++){
if(g[0][i] == 1){
obstacle = true;
}
ps[0][i] = obstacle ? 0 : 1;
}
for(int i = 1; i < g.length; i++){
for(int j = 1; j < g[0].length; j++){
if(g[i][j] == 1){
ps[i][j] = 0;
}
else{
ps[i][j] = ps[i-1][j] + ps[i][j-1];
}
}
}
return ps[g.length-1][g[0].length-1];
}
}
Minimum Path Sum:矩阵型,求最大最小值
方法一:自底向上 + 二维memo
class Solution {
public int minPathSum(int[][] g) {
if (g.length == 0) return 0;
int[][] sum = new int[g.length][g[0].length];
sum[0][0] = g[0][0];
for(int i = 1; i < g.length; i++){
sum[i][0] = g[i][0] + sum[i-1][0];
}
for(int i = 1; i < g[0].length; i++){
sum[0][i] = g[0][i] + sum[0][i-1];
}
for(int i = 1; i < g.length; i ++){
for(int j = 1; j < g[0].length; j++){
sum[i][j] = g[i][j] + Math.min(sum[i-1][j], sum[i][j-1]);
}
}
return sum[g.length-1][g[0].length-1];
}
}
方法二:自底向上 + 一维memo
class Solution {
public int minPathSum(int[][] g) {
if (g.length == 0) return 0;
int[] sum = new int[g[0].length];
sum[0] = g[0][0];
for(int i = 1; i < g[0].length; i++){
sum[i] = g[0][i] + sum[i-1];
}
for(int i = 1; i < g.length; i ++){
sum[0] = sum[0] + g[i][0];
for(int j = 1; j < g[0].length; j++){
sum[j] = g[i][j] + Math.min(sum[j], sum[j-1]);
}
}
return sum[g[0].length-1];
}
}
Triangle : 矩阵型,求最小值
方法一 : 自定向下
递归 + memo
问题拆分、状态、状态转移方程、初始值,一个都不能少
class Solution {
Map<Long, Integer> m = new HashMap<>();
int helper(List<List<Integer>> tri, int row, int col){
long key = (long)row << 32 | col;
if(m.containsKey(key)){
return m.get(key);
}
if ( row == 0 && col == 0 ){ //不能忽略此逻辑
return tri.get(0).get(0);
}
int left = Integer.MAX_VALUE;
int top = Integer.MAX_VALUE;
if(row > 0){
if(col < tri.get(row).size() - 1){
top = helper(tri, row - 1, col);
}
if(col > 0){
left = helper(tri, row - 1, col - 1);
}
}
int val = Math.min(top, left) + tri.get(row).get(col);
m.put(key, val);
return val;
}
public int minimumTotal(List<List<Integer>> tri) {
if(tri.size() == 0) return 0;
int sum = Integer.MAX_VALUE;
for(int j = 0; j < tri.get(tri.size()-1).size(); j++){
sum = Math.min(sum, helper(tri, tri.size()-1, j));
}
return sum;
}
}
方法二 : 自底向上
递推 + memo,下面的方法还可以进一步优化
class Solution {
public int minimumTotal(List<List<Integer>> tri) {
if(tri.size() == 0) return 0;
int[] memo = new int[tri.get(tri.size()-1).size()];
memo[0] = tri.get(0).get(0);
for(int i = 1; i < tri.size(); i ++){
for(int j = tri.get(i).size() -1; j >= 0 ; j--){
if(j == 0){
memo[j] = memo[j] + tri.get(i).get(j);
}
else if(j == tri.get(i).size() - 1){
memo[j] = memo[j-1] + tri.get(i).get(j);
}
else{
memo[j] = Math.min(memo[j-1], memo[j]) + tri.get(i).get(j);
}
}
}
int sum = Integer.MAX_VALUE;
for(int i=0; i<memo.length; i++){
sum = Math.min(sum, memo[i]);
}
return sum;
}
}
Maximum Square :矩阵型,求最大最小值
方法一:自底向上
递推 + memo
主要看斜对角线,当前位置能成为多大square,要看左上角位置有多大square。本地弯弯道道挺多。
class Solution {
public int maximalSquare(char[][] m) {
if(m.length == 0) return 0;
int[][] memo = new int[m.length + 1][m[0].length + 1];
for(int i = 0; i <= m.length; i++ ){
memo[i][0] = 0;
}
for(int i = 0; i <= m[0].length; i++){
memo[0][i] = 0;
}
int maxi = 0;
for(int i = 0; i < m.length; i++){
for(int j = 0; j < m[0].length; j++){
if(m[i][j] != '1'){
memo[i+1][j+1] = 0;
continue;
}
if(memo[i][j] <= 0){
memo[i+1][j+1] = 1;
}
else {
int k = 1;
for(; k <= memo[i][j]; k++){
if(m[i-k][j] != '1' || m[i][j-k] != '1'){
break;
}
}
memo[i+1][j+1] = k;
}
//System.out.println("i" + i + " j" + j + " =" + memo[i+1][j+1]);
maxi = Math.max(memo[i+1][j+1], maxi);
}
}
return maxi * maxi;
}
}
Range Sum Query 2D - Immutable
方法一 : 自底向上, 递推 + memo
class NumMatrix {
private int[][] memo;
public NumMatrix(int[][] m) {
if(m.length == 0 || m[0].length == 0) return;
memo = new int[m.length][m[0].length + 1];
for(int i = 0; i < m.length; i++){
for(int j = 0; j < m[0].length; j++){
memo[i][j+1] = memo[i][j] + m[i][j];
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
int sum = 0;
for(int i = row1; i <= row2; i++){
sum += (memo[i][col2+1] - memo[i][col1]);
}
return sum;
}
}
leetcode动态规划笔记二的更多相关文章
- leetcode动态规划笔记一---一维DP
动态规划 刷题方法 告别动态规划,连刷 40 道题,我总结了这些套路,看不懂你打我 - 知乎 北美算法面试的题目分类,按类型和规律刷题 题目分类 一维dp House Robber : 求最大最小值 ...
- leetcode动态规划笔记三---单序列型
单序列型DP 相比一维DP,这种类型状态转移与过去每个阶段的状态都有关. Longest Increasing Subsequence : 求最大最小值 Perfect Squares : 求某个规模 ...
- 快速上手leetcode动态规划题
快速上手leetcode动态规划题 我现在是初学的状态,在此来记录我的刷题过程,便于以后复习巩固. 我leetcode从动态规划开始刷,语言用的java. 一.了解动态规划 我上网查了一下动态规划,了 ...
- 《CMake实践》笔记二:INSTALL/CMAKE_INSTALL_PREFIX
<CMake实践>笔记一:PROJECT/MESSAGE/ADD_EXECUTABLE <CMake实践>笔记二:INSTALL/CMAKE_INSTALL_PREFIX &l ...
- jQuery源码笔记(二):定义了一些变量和函数 jQuery = function(){}
笔记(二)也分为三部分: 一. 介绍: 注释说明:v2.0.3版本.Sizzle选择器.MIT软件许可注释中的#的信息索引.查询地址(英文版)匿名函数自执行:window参数及undefined参数意 ...
- Mastering Web Application Development with AngularJS 读书笔记(二)
第一章笔记 (二) 一.scopes的层级和事件系统(the eventing system) 在层级中管理的scopes可以被用做事件总线.AngularJS 允许我们去传播已经命名的事件用一种有效 ...
- Python 学习笔记二
笔记二 :print 以及基本文件操作 笔记一已取消置顶链接地址 http://www.cnblogs.com/dzzy/p/5140899.html 暑假只是快速过了一遍python ,现在起开始仔 ...
- WPF的Binding学习笔记(二)
原文: http://www.cnblogs.com/pasoraku/archive/2012/10/25/2738428.htmlWPF的Binding学习笔记(二) 上次学了点点Binding的 ...
- webpy使用笔记(二) session/sessionid的使用
webpy使用笔记(二) session的使用 webpy使用系列之session的使用,虽然工作中使用的是django,但是自己并不喜欢那种大而全的东西~什么都给你准备好了,自己好像一个机器人一样赶 ...
随机推荐
- 6-网页,网站,微信公众号基础入门(PHP学习_1)
https://www.cnblogs.com/yangfengwu/p/11037675.html 安装PhpStrom http://www.jetbrains.com/phpstorm/ 然后百 ...
- # [SDOI2019]移动金币 阶梯博弈 dp
[SDOI移动金币 链接 vijos 思路 阶梯博弈,dp统计. 参见wxyww 代码 #include <bits/stdc++.h> using namespace std; cons ...
- js中的逗号运算符
逗号运算符 逗号运算符是二元运算符,它的操作数可以是任意类型.它首先计算左操作数,然后计算右操作数,最后返回右操作数的值,用逗号运算符可以在一条语句中执行多个运算 作用: 1.在一条语句中从左到右执行 ...
- jmeter-可视化的非GUI模式
概述 我们在使用JMeter执行性能测试的过程中,会遇到很多不方便的地方 GUI模式 执行脚本很方便,看结果也很方便,但是GUI模式消耗资源,对测试结果的准确性影响很大 非GUI模式 消耗资源很少,但 ...
- ansible-playbook-批量修改主机名
修改cat /etc/ansible/hosts [test]10.27.235.108 host_name=test_host_name - hosts: test user: root gathe ...
- 关于org.apache.lucene.queryParser.ParseException: Encountered "" 解决方法
现象: org.apache.lucene.queryParser.ParseException: Encountered "<EOF>" at line 1, col ...
- [Web Pdf] flying-saucer + iText + Freemarker生成pdf 跨页问题
转载于: https://blog.csdn.net/qq_31980421/article/details/79662988 flying-saucer + iText + Freemarker实 ...
- Spring Boot Controller单元测试
一.创建Controller 一个方法是用传统IO来下载文件,一个是NIO下载文件 @Controller public class FileController { private Logger l ...
- Debian 9安装java与设置环境变量
安装默认JRE / JDK 先更新软件包索引: apt update 检查是否已安装Java: java -version 如果当前未安装Java,您将看到以下输出: Output-bash: jav ...
- Oracle的“ORA-00937: 不是单组分组函数” 如何解决?
之前在编写oracle的sql语句时遇到这个问题,这里做个记录 问题描述:ORA-00937: 不是单组分组函数 问题原因:select语句中又在查询某一列的值,其中还有聚合函数 原先本人编写SQL是 ...