Codeforces Round #257 (Div. 1)A~C(DIV.2-C~E)题解
今天老师(orz sansirowaltz)让我们做了很久之前的一场Codeforces Round #257 (Div. 1),这里给出A~C的题解,对应DIV2的C~E。
1 second
256 megabytes
standard input
standard output
Jzzhu has a big rectangular chocolate bar that consists of n × m unit squares. He wants to cut this bar exactly k times. Each cut must meet the following requirements:
- each cut should be straight (horizontal or vertical);
- each cut should go along edges of unit squares (it is prohibited to divide any unit chocolate square with cut);
- each cut should go inside the whole chocolate bar, and all cuts must be distinct.
The picture below shows a possible way to cut a 5 × 6 chocolate for 5 times.
Imagine Jzzhu have made k cuts and the big chocolate is splitted into several pieces. Consider the smallest (by area) piece of the chocolate, Jzzhu wants this piece to be as large as possible. What is the maximum possible area of smallest piece he can get with exactly k cuts? The area of a chocolate piece is the number of unit squares in it.
A single line contains three integers n, m, k (1 ≤ n, m ≤ 109; 1 ≤ k ≤ 2·109).
Output a single integer representing the answer. If it is impossible to cut the big chocolate k times, print -1.
3 4 1
6
6 4 2
8
2 3 4
-1
In the first sample, Jzzhu can cut the chocolate following the picture below:
In the second sample the optimal division looks like this:
In the third sample, it's impossible to cut a 2 × 3 chocolate 4 times.
这题是数学问题,感觉没什么好说的,就是注意long long和细节,很容易WA掉。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; int k;
long long n,m;
long long ans; int main()
{
scanf("%I64d%I64d%d",&n,&m,&k);
if(n<k+1 && m<k+1)
{
if(n+m-2<k)
{
printf("%d\n",-1);
return 0;
}
printf("%I64d\n",max((n/(k-m+2)),m/(k-n+2)));
return 0;
}
if(n/(k+1)*m>m/(k+1)*n)
printf("%I64d\n",n/(k+1)*m);
else
printf("%I64d\n",m/(k+1)*n);
return 0;
}
2 seconds
256 megabytes
standard input
standard output
Jzzhu is the president of country A. There are n cities numbered from 1 to n in his country. City 1 is the capital of A. Also there are mroads connecting the cities. One can go from city ui to vi (and vise versa) using the i-th road, the length of this road is xi. Finally, there are k train routes in the country. One can use the i-th train route to go from capital of the country to city si (and vise versa), the length of this route is yi.
Jzzhu doesn't want to waste the money of the country, so he is going to close some of the train routes. Please tell Jzzhu the maximum number of the train routes which can be closed under the following condition: the length of the shortest path from every city to the capital mustn't change.
The first line contains three integers n, m, k (2 ≤ n ≤ 105; 1 ≤ m ≤ 3·105; 1 ≤ k ≤ 105).
Each of the next m lines contains three integers ui, vi, xi (1 ≤ ui, vi ≤ n; ui ≠ vi; 1 ≤ xi ≤ 109).
Each of the next k lines contains two integers si and yi (2 ≤ si ≤ n; 1 ≤ yi ≤ 109).
It is guaranteed that there is at least one way from every city to the capital. Note, that there can be multiple roads between two cities. Also, there can be multiple routes going to the same city from the capital.
Output a single integer representing the maximum number of the train routes which can be closed.
5 5 3
1 2 1
2 3 2
1 3 3
3 4 4
1 5 5
3 5
4 5
5 5
2
2 2 3
1 2 2
2 1 3
2 1
2 2
2 3
2
思路:跑一遍最短路spfa,然后记录经过的边(如果普通边和铁路在某种情况下一样优则选择普通边),若其中有铁路就保留,反之不在最短路径中的铁路删除,cout删除的个数就OK了~
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
#include<map>
#include<queue>
using namespace std; int n,m,k,x,y,z,cnt;
struct sdt
{
int to,len;
bool flag;
};
vector<sdt>v[100005];
long long dis[100005];
bool par[100005]; void spfa()
{
priority_queue<pair<long long,int>,vector<pair<long long,int> >,greater<pair<long long,int> > >q;
bool vis[100005]={0};
q.push(make_pair(0,1));
vis[1]=1;
while(!q.empty())
{
int s=q.top().second;
vis[s]=0;
q.pop();
for(int i=0;i<v[s].size();i++)
{
sdt p=v[s][i];
if(dis[s]!=1e18 && dis[p.to]>dis[s]+p.len)
{
dis[p.to]=dis[s]+p.len;
if(par[p.to]==1)
{
cnt--;
par[p.to]=0;
}
if(p.flag==1)
{
++cnt;
par[p.to]=1;
}
if(!vis[p.to])
{
q.push(make_pair(dis[p.to],p.to));
vis[p.to]=1;
}
}
else if(dis[s]!=1e18 && dis[p.to]==dis[s]+p.len)
{
if(!par[p.to])continue;
if(p.flag)continue;
par[p.to]=0;
cnt--;
}
}
}
} int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
sdt p;
p.to=y;
p.len=z;
p.flag=0;
v[x].push_back(p);
p.to=x;
p.len=z;
p.flag=0;
v[y].push_back(p);
}
for(int i=1;i<=k;i++)
{
scanf("%d%d",&y,&z);
sdt p;
p.to=y;
p.len=z;
p.flag=1;
v[1].push_back(p);
p.to=1;
p.len=z;
p.flag=1;
v[y].push_back(p);
}
for(int i=2;i<=n;i++)
{
dis[i]=1e18;
}
spfa();
printf("%d\n",k-cnt);
return 0;
}
1 second
256 megabytes
standard input
standard output
Jzzhu has picked n apples from his big apple tree. All the apples are numbered from 1 to n. Now he wants to sell them to an apple store.
Jzzhu will pack his apples into groups and then sell them. Each group must contain two apples, and the greatest common divisor of numbers of the apples in each group must be greater than 1. Of course, each apple can be part of at most one group.
Jzzhu wonders how to get the maximum possible number of groups. Can you help him?
A single integer n (1 ≤ n ≤ 105), the number of the apples.
The first line must contain a single integer m, representing the maximum number of groups he can get. Each of the next m lines must contain two integers — the numbers of apples in the current group.
If there are several optimal answers you can print any of them.
6
2
6 3
2 4
9
3
9 3
2 4
6 8
2
0
思路:这是数论问题。显然若是偶数则随便组合,奇数的话,若是某质数的倍数随便组合(若在N以内此质数倍数个数为奇数,则2倍项留给偶数之后处理,否则立即匹配),当然要打标记是否用过。上述方式即可保证最优!易证。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
#include<map>
#include<queue>
#include<cstring>
using namespace std; int n,cnt;
bool vis[100005];
vector<pair<int,int> >v;
bool p[100005]; void prime()
{
memset(p,1,sizeof(p));
p[1]=0;
for(int i=2;i<=n;i++)
{
if(p[i])
{
for(int j=i*2;j<=n;j+=i)
{
p[j]=0;
}
}
}
} int main()
{
scanf("%d",&n);
prime();
for(int i=3;i<=n/2;i++)
{
if(!p[i] || vis[i])continue;
int sum=0;
for(int j=1;j<=n/i;j++)if(!vis[i*j])sum++;
if(sum%2==0)
{
for(int j=1;j<=n/i;j++)
{
if(j+1>n/i)break;
if(vis[i*j])
{
continue;
}
else if(vis[i*(j+1)])
{
int k;
for(k=j+2;k<=n/i;k++)
{
if(!vis[i*k])
{
v.push_back(make_pair(j*i,i*k));
vis[j*i]=vis[i*k]=1;
++cnt;
break;
}
}
j=k;
continue;
}
v.push_back(make_pair(j*i,i*(j+1)));
vis[j*i]=vis[i*(j+1)]=1;
j++;
++cnt;
}
}
else
{
for(int j=1;j<=n/i;j++)
{
if(j+1>n/i)break;
if(j==2)continue;
if(vis[i*j])
{
continue;
}
else if(vis[i*(j+1)] || j+1==2)
{
int k;
for(k=j+2;k<=n/i;k++)
{
if(!vis[i*k])
{
v.push_back(make_pair(j*i,i*k));
vis[j*i]=vis[i*k]=1;
++cnt;
break;
}
}
j=k;
continue;
}
v.push_back(make_pair(j*i,i*(j+1)));
vis[j*i]=vis[i*(j+1)]=1;
j++;
++cnt;
}
}
} for(int i=1;i<=n/2;i++)
{
if(i+1>n/2)break;
if(vis[i*2])continue;
else if(vis[2*(i+1)])
{
int j;
for(j=i+2;j<=n/2;j++)
{
if(!vis[2*j])
{
v.push_back(make_pair(2*i,2*j));
vis[2*i]=vis[2*j]=1;
++cnt;
break;
}
}
i=j;
continue;
}
v.push_back(make_pair(2*i,2*i+2));
vis[2*i]=vis[2*(i+1)]=1;
i++;
++cnt;
} printf("%d\n",cnt);
for(int i=0;i<cnt;i++)
{
printf("%d %d\n",v[i].first,v[i].second);
}
return 0;
}
Codeforces Round #257 (Div. 1)A~C(DIV.2-C~E)题解的更多相关文章
- 【Codeforces Round 1129】Alex Lopashev Thanks-Round (Div. 1)
Codeforces Round 1129 这场模拟比赛做了\(A1\).\(A2\).\(B\).\(C\),\(Div.1\)排名40. \(A\)题是道贪心,可以考虑每一个站点是分开来的,把目的 ...
- Codeforces Round #257 (Div. 1) C. Jzzhu and Apples (素数筛)
题目链接:http://codeforces.com/problemset/problem/449/C 给你n个数,从1到n.然后从这些数中挑选出不互质的数对最多有多少对. 先是素数筛,显然2的倍数的 ...
- Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)
题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...
- Codeforces Round #257 (Div. 1)449A - Jzzhu and Chocolate(贪婪、数学)
主题链接:http://codeforces.com/problemset/problem/449/A ------------------------------------------------ ...
- Codeforces Round #257 (Div. 2) A. Jzzhu and Children(简单题)
题目链接:http://codeforces.com/problemset/problem/450/A ------------------------------------------------ ...
- Codeforces Round #257(Div. 2) B. Jzzhu and Sequences(矩阵高速幂)
题目链接:http://codeforces.com/problemset/problem/450/B B. Jzzhu and Sequences time limit per test 1 sec ...
- Codeforces Round #257 (Div. 2)
A - Jzzhu and Children 找到最大的ceil(ai/m)即可 #include <iostream> #include <cmath> using name ...
- Codeforces Round #257(Div.2) D Jzzhu and Cities --SPFA
题意:n个城市,中间有m条道路(双向),再给出k条铁路,铁路直接从点1到点v,现在要拆掉一些铁路,在保证不影响每个点的最短距离(距离1)不变的情况下,问最多能删除多少条铁路 分析:先求一次最短路,铁路 ...
- Codeforces Round #257 (Div. 2) B
B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...
随机推荐
- CSS3 线型渐变
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Cocos2dx 学习笔记整理----在项目中使用图片(二)
之前了解了一种比较简单的图片的使用方式, 今次来了解稍微复杂一点的图片使用方式,plist+png. 这里要用到之前提到的Texture Packer. Texture Packer是一款图片打包工具 ...
- fedora 挂载 小米手机 (估计其它android设备也是类似操作)
1 参考ubuntu挂载 在Ubuntu挂载使用MTP设备步骤如下: 1.将MTP设备连接至PC机 2.如果是第一次使用MTP设备需要安装以下软件,否则可以跳过此步骤: $ sudo apt-get ...
- css3动画-transition
当css属性改变的时候,控制animation的速度,让属性的变化发生在一段时间之内,而不是立即生效. 语法 transition: <property> <duration> ...
- elya:给移动APP创业者的工具集(一)
作为移动APP的创业者,往往遇到的困扰是,人家都开发过的功能了,劳资还得辛辛苦苦开发一遍,比如说什么积分系统啊,什么IM组件啊,什么滤镜啊,而且发一个版本官网就得改一次,做一次微信营销就要开发个H5页 ...
- iOS开发—— UIImagePickerController获取相册和拍照
一.简单的拍照显示,或是从相册中直接选取照片 #import "ViewController.h" @interface ViewController ()<UIImageP ...
- IOS9提示“不受信任的开发者”如何处理
iPhone升级到IOS9版本后,发现部分APP在下载后首次运行时,都会提示“不受信任的应用程序开发者”,这是因为企业证书发布的APP,没有经过AppStore审核,于是iOS对用户做出一个安全性的提 ...
- python 开发者 精品
当 Python 和 R 遇上北京二手房 http://mp.weixin.qq.com/s?timestamp=1473262097&src=3&ver=1&signatur ...
- pypi 的使用
关于本人的package,情况比较简单,所有的.py文件全部放到了一个叫做FundsData的文件夹下(package下),上层目录也叫FundsData(其实叫什么都可以),其下放了setup.py ...
- HNU 13073 Ternarian Weights 解题报告
本题大意: 用天平对一物品进行称重,现有重量不同的砝码,砝码的重量分别为:1,3,9,27,..,3^n.(n<20) 天平的右侧放砝码,左侧放物品或物品和砝码,使得左右两边的重量相等. 现有一 ...