KMP算法详解-- 转自Matrix67
6 7 8 9 ……
A = a b a b 6 7
7 8 9 ……
A = a b a b a 5 6 7
8 9 ……
A = a b a b a b 6 7
8 9 ……
A = a b a b a b 4 5 6 7
8 9 ……
A = a b a b a b 2 3 4 5 6 7
8 9 ……
A = a b a b a b 1 2 3 4 5 6 7
终于,A[8]=B[1],i变为8,j为1。事实上,有可能j到了0仍然不能满足A[i+1]=B[j+1](比如A[8]="d"时)。因此,准确的说法是,当j=0了时,我们增加i值但忽略j直到出现A[i]=B[1]为止。
这个过程的代码很短(真的很短),我们在这里给出:
j:=0;
for i:=1 to n do
begin
while (j>0) and (B[j+1]<>A[i]) do j:=P[j];
if B[j+1]=A[i] then j:=j+1;
if j=m then
begin
writeln('Pattern occurs with shift ',i-m);
j:=P[j];
end;
end;
最后的j:=P[j]是为了让程序继续做下去,因为我们有可能找到多处匹配。
这个程序或许比想像中的要简单,因为对于i值的不断增加,代码用的是for循环。因此,这个代码可以这样形象地理解:扫描字符串A,并更新可以匹配到B的什么位置。
现在,我们还遗留了两个重要的问题:一,为什么这个程序是线性的;二,如何快速预处理P数组。
为什么这个程序是O(n)的?其实,主要的争议在于,while循环使得执行次数出现了不确定因素。我们将用到时间复杂度的摊还分析中的主要策略,简单地说就是通过观察某一个变量或函数值的变化来对零散的、杂乱的、不规则的执行次数进行累计。KMP的时间复杂度分析可谓摊还分析的典型。我们从上述程序的j 值入手。每一次执行while循环都会使j减小(但不能减成负的),而另外的改变j值的地方只有第五行。每次执行了这一行,j都只能加1;因此,整个过程中j最多加了n个1。于是,j最多只有n次减小的机会(j值减小的次数当然不能超过n,因为j永远是非负整数)。这告诉我们,while循环总共最多执行了n次。按照摊还分析的说法,平摊到每次for循环中后,一次for循环的复杂度为O(1)。整个过程显然是O(n)的。这样的分析对于后面P数组预处理的过程同样有效,同样可以得到预处理过程的复杂度为O(m)。
预处理不需要按照P的定义写成O(m^2)甚至O(m^3)的。我们可以通过P[1],P[2],...,P[j-1]的值来获得P[j]的值。对于刚才的B="ababacb",假如我们已经求出了P[1],P[2],P[3]和P[4],看看我们应该怎么求出P[5]和P[6]。P[4]=2,那么P [5]显然等于P[4]+1,因为由P[4]可以知道,B[1,2]已经和B[3,4]相等了,现在又有B[3]=B[5],所以P[5]可以由P[4] 后面加一个字符得到。P[6]也等于P[5]+1吗?显然不是,因为B[ P[5]+1 ]<>B[6]。那么,我们要考虑“退一步”了。我们考虑P[6]是否有可能由P[5]的情况所包含的子串得到,即是否P[6]=P[ P[5] ]+1。这里想不通的话可以仔细看一下:
1 2 3 4 5 6 7
B = a b a b a c b
P = 0 0 1 2 3 ?
P[5]=3是因为B[1..3]和B[3..5]都是"aba";而P[3]=1则告诉我们,B[1]、B[3]和B[5]都是"a"。既然P[6]不能由P[5]得到,或许可以由P[3]得到(如果B[2]恰好和B[6]相等的话,P[6]就等于P[3]+1了)。显然,P[6]也不能通过P[3]得到,因为B[2]<>B[6]。事实上,这样一直推到P[1]也不行,最后,我们得到,P[6]=0。
怎么这个预处理过程跟前面的KMP主程序这么像呢?其实,KMP的预处理本身就是一个B串“自我匹配”的过程。它的代码和上面的代码神似:
P[1]:=0;
j:=0;
for i:=2 to m do
begin
while (j>0) and (B[j+1]<>B[i]) do j:=P[j];
if B[j+1]=B[i] then j:=j+1;
P[i]:=j;
end;
最后补充一点:由于KMP算法只预处理B串,因此这种算法很适合这样的问题:给定一个B串和一群不同的A串,问B是哪些A串的子串。
串匹配是一个很有研究价值的问题。事实上,我们还有后缀树,自动机等很多方法,这些算法都巧妙地运用了预处理,从而可以在线性的时间里解决字符串的匹配。我们以后来说。
昨天发现一个特别晕的事,知道怎么去掉BitComet的广告吗?把界面语言设成英文就行了。
还有,金山词霸和Dr.eye都可以去自杀了,Babylon素王道。
KMP算法详解-- 转自Matrix67的更多相关文章
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
- KMP算法详解(转自中学生OI写的。。ORZ!)
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- 算法进阶面试题01——KMP算法详解、输出含两次原子串的最短串、判断T1是否包含T2子树、Manacher算法详解、使字符串成为最短回文串
1.KMP算法详解与应用 子序列:可以连续可以不连续. 子数组/串:要连续 暴力方法:逐个位置比对. KMP:让前面的,指导后面. 概念建设: d的最长前缀与最长后缀的匹配长度为3.(前缀不能到最后一 ...
- 数据结构4.3_字符串模式匹配——KMP算法详解
next数组表示字符串前后缀匹配的最大长度.是KMP算法的精髓所在.可以起到决定模式字符串右移多少长度以达到跳跃式匹配的高效模式. 以下是对next数组的解释: 如何求next数组: 相关链接:按顺序 ...
- KMP算法详解&&P3375 【模板】KMP字符串匹配题解
KMP算法详解: KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt(雾)提出的. 对于字符串匹配问题(such as 问你在abababb中有多少个 ...
- matrix67:kmp算法详解
个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料.但网上的讲法基本上都涉及到“移动(shift)”.“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就 ...
- 字符串匹配KMP算法详解
1. 引言 以前看过很多次KMP算法,一直觉得很有用,但都没有搞明白,一方面是网上很少有比较详细的通俗易懂的讲解,另一方面也怪自己没有沉下心来研究.最近在leetcode上又遇见字符串匹配的题目,以此 ...
- KMP算法详解-彻底清楚了(转载+部分原创)
引言 KMP算法指的是字符串模式匹配算法,问题是:在主串T中找到第一次出现完整子串P时的起始位置.该算法是三位大牛:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,以其名字首字 ...
随机推荐
- Android之Http沟通——4.Android HTTP索取信息:HttpClient
本节介绍: 他谈到了部分HttpURLConnection.本节HttpClient该,Apache为我们提供HttpClient(简单的Http客户端),只是毕竟不是亲儿子.HttpClient在A ...
- Python输出文件由线解释和扩展的具体内容
结束此处的测试代码中作者写的,第一段包含不正确的版本号,后者是正确的版本号: #! /usr/bin/python2.7 try: filename = raw_input('please i ...
- 组合数处理(逆元求解)...Orz
网上发现了不错的博客讲解... 熊猫的板子:http://blog.csdn.net/qq_32734731/article/details/51484729 组合数的预处理(费马小定理|杨辉三角|卢 ...
- 使用 CodeIgniter 框架快速开发 PHP 应用(一)
原文:使用 CodeIgniter 框架快速开发 PHP 应用(一) 对 CodeIgniter 的介绍大多数PHPer都想写出运行状态良好的应用程序,而且希望尽可能做得简单且不费事.这篇文章是有关 ...
- android 性能測试iozone篇
一:简单介绍 iozone是一个文件系统的benchmark工具, 用于測试不同的操作系统中文件系统的读写性能, 能够測试下面13种模式 0=write/rewrite 1=read/re-read ...
- 设置韩澳大利亚sinox弄winxp清除字体和界面美观
澳大利亚开始与汉sinox一直以为接口暗淡,字体比较模糊,否winxp光明,导致眼比较辛苦的眼睛.比方说,可能不那么黯淡刺眼,有益眼睛,但我不能忍受字体模糊.即使调整分辨率,,但是字体模糊还是没有改观 ...
- html + CSS
Html 1 html基本标签 1.1 html文件结构 <!DOCTYPE html PUBLIC "-//W3C//DTDXHTML 1.0 Transitional//EN&qu ...
- Java EE (1) -- Java EE 6 Web Component Developer Certified Expert(1z0-899)
1: hash map, hash tables 的区别 The HashMap class is roughly equivalent to Hashtable, except that it is ...
- thymeleaf模板引擎shiro集成框架
shiro权限框架.前端验证jsp设计.间tag它只能用于jsp系列模板引擎. 使用最近项目thymeleaf作为前端模板引擎,采用HTML档,未出台shiro的tag lib,假设你想利用这段时间s ...
- node.js高效操作mongodb
node.js高效操作mongodb Mongoose库简而言之就是在node环境中操作MongoDB数据库的一种便捷的封装,一种对象模型工具,类似ORM,Mongoose将数据库中的数据转换为Jav ...