这是一个相对简单的模拟,因为运算规则已经告诉了我们,并且比较简单,不要被吓到……

  思路:多项式除以另外一个多项式,如果能除,那么他的最高次一定被降低了,如果最高次不能被降低,那说明已经无法被除,就是题目要求输出的膜了,降低最高次的方法很简单,只要被除式的最高次 >= 除式的最高次,就将除式的最高次升高到与被除式一样高,然后让被除式减去它,直到不满足上述关系为止。

  代码如下:

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
#define maxn 1100
int f[maxn],g[maxn],h[maxn];
int mul[maxn*],now[maxn*];
int main()
{
int t,f1,g1,h1,m1,tmp;
scanf("%d",&t);
while(t--){
scanf("%d",&f1);
for(int i = f1-;i >= ;i--) scanf("%d",&f[i]);
scanf("%d",&g1);
for(int i = g1-;i >= ;i--) scanf("%d",&g[i]);
scanf("%d",&h1);
for(int i = h1-;i >= ;i--) scanf("%d",&h[i]);
for(int i = ;i <= f1+g1;i++) mul[i] = ;
for(int i = ;i < f1;i++){
for(int j = ;j < g1;j++){
mul[i+j] += f[i]*g[j];
mul[i+j] %= ;
}
}
h1--;
m1 = f1+g1-;
while(h1 <= m1){
tmp = m1 - h1;
for(int i = ;i <= m1;i++) now[i] = ;
for(int i = ;i <= h1;i++){
now[i+tmp] = h[i];
}
for(int i = m1;i >= ;i--) mul[i] = (mul[i]+now[i])%;
for(int i = m1;i >= ;i--) {
if(mul[i]){
m1 = i;
break;
}
}
}
printf("%d",m1+);
for(int i = m1;i >= ;i--){
printf(" %d",mul[i]);
}
puts("");
}
return ;
}

UVALive 2323 Modular Multiplication of Polynomials(模拟)的更多相关文章

  1. POJ1060 Modular multiplication of polynomials

    题目来源:http://poj.org/problem?id=1060 题目大意: 考虑系数为0和1的多项式.两个多项式的加法可以通过把相应次数项的系数相加而实现.但此处我们用模2加法来计算系数之和. ...

  2. POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)

    Modular multiplication of polynomials Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3 ...

  3. POJ 1060:Modular multiplication of polynomials

    Modular multiplication of polynomials Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4 ...

  4. POJ 1060 Modular multiplication of polynomials(多项式的加减乘除,除法转化成减法来求)

    题意:给出f(x),g(x),h(x)的 (最高次幂+1)的值,以及它们的各项系数,求f(x)*g(x)/h(x)的余数. 这里多项式的系数只有1或0,因为题目要求:这里多项式的加减法是将系数相加/减 ...

  5. Lintcode: Hash Function && Summary: Modular Multiplication, Addition, Power && Summary: 长整形long

    In data structure Hash, hash function is used to convert a string(or any other type) into an integer ...

  6. PAT 1009 Product of Polynomials 模拟

    This time, you are supposed to find A*B where A and B are two polynomials. Input Specification: Each ...

  7. UVALive 5880 Vigenère Cipher Encryption (模拟)

    Stack Machine Executor 题目链接: http://acm.hust.edu.cn/vjudge/problem/26628 Description http://7xjob4.c ...

  8. UVa 442 Matrix Chain Multiplication(矩阵链,模拟栈)

    意甲冠军  由于矩阵乘法计算链表达的数量,需要的计算  后的电流等于行的矩阵的矩阵的列数  他们乘足够的人才  非法输出error 输入是严格合法的  即使仅仅有两个相乘也会用括号括起来  并且括号中 ...

  9. UVALive 4222 /HDU 2961 Dance 大模拟

    Dance Problem Description For a dance to be proper in the Altered Culture of Machinema, it must abid ...

随机推荐

  1. 如何在Excel中少犯二(I)

    作者:何明科链接:https://zhuanlan.zhihu.com/p/23472480来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 收到不少建议,要求开知乎Li ...

  2. [ An Ac a Day ^_^ ] HDU 1257 基础dp 最长上升子序列

    最近两天在迎新 看来只能接着水题了…… 新生培训的任务分配 作为一个有担当的学长 自觉去选了动态规划…… 然后我觉得我可以开始水动态规划了…… 今天水一发最长上升子序列…… kuangbin有nlog ...

  3. (转载)app ico图标字体制作

    图标字体化浅谈   在做手机端Web App项目中,经常会遇到小图标在手机上显示比较模糊的问题,经过实践发现了一种比较好的解决方案,图标字体化.在微社区项目中,有很多小的Icon(图标),如分享.回复 ...

  4. ECOS-Ecstore mongodb大数据 读写效率优化

    转自同功BBS 拆表存取kv <?php /* 经过拆变优化的ECStore mongodb 类 base/lib/kvstore/mongodb.php*/ class base_kvstor ...

  5. css样式表及属性

    CSS(Cascading Style Sheet,叠层样式表),作用是美化HTML网页. /*注释区域*/    此为注释语法 一.样式表 (一)样式表的分类 1.内联样式表 和HTML联合显示,控 ...

  6. ***C - I love sneakers!(动态规划,分组背包)

    C - I love sneakers! Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  7. 锅巴H264播放器地址和说明

    锅巴H264播放器地址和说明 软件说明:  此工具专门用来播放安防监控行业的H264录像文件,不管是哪个设备厂家的视频协议,只要您的录像文件里有 H264数据,就可以播放. 备注: 因为被一些事情的影 ...

  8. linux nfs开启

    nfs设置: NFS的配置过程很简单.在服务器端中编辑/etc/exports文件,添加如下内容:     /home/cotton/data/cotton/zghy 192.168.2.*(rw,s ...

  9. Nexus Maven 私服搭建

    1.下载Nexus安装文件:http://www.sonatype.org/nexus/go ,目前是nexus-2.13.0-01-bundle.tar.zip这个最新版本: 2.解压到任意目录,我 ...

  10. SharePoint 2010 Modal Dialog

    SharePoint 2010 Modal Dialog Tweet   Modal dialog play very important role to improve the user exper ...