C#异步的世界【上】
新进阶的程序员可能对async、await用得比较多,却对之前的异步了解甚少。本人就是此类,因此打算回顾学习下异步的进化史。
本文主要是回顾async异步模式之前的异步,下篇文章再来重点分析async异步模式。
APM
APM 异步编程模型,Asynchronous Programming Model
早在C#1的时候就有了APM。虽然不是很熟悉,但是多少还是见过的。就是那些类是BeginXXX和EndXXX的方法,且BeginXXX返回值是IAsyncResult接口。
在正式写APM示例之前我们先给出一段同步代码:
//1、同步方法
private void button1_Click(object sender, EventArgs e)
{
Debug.WriteLine("【Debug】线程ID:" + Thread.CurrentThread.ManagedThreadId); var request = WebRequest.Create("https://github.com/");//为了更好的演示效果,我们使用网速比较慢的外网
request.GetResponse();//发送请求 Debug.WriteLine("【Debug】线程ID:" + Thread.CurrentThread.ManagedThreadId);
label1.Text = "执行完毕!";
}
【说明】为了更好的演示异步效果,这里我们使用winform程序来做示例。(因为winform始终都需要UI线程渲染界面,如果被UI线程占用则会出现“假死”状态)
【效果图】
看图得知:
- 我们在执行方法的时候页面出现了“假死”,拖不动了。
- 我们看到打印结果,方法调用前和调用后线程ID都是9(也就是同一个线程)
下面我们再来演示对应的异步方法:(BeginGetResponse、EndGetResponse所谓的APM异步模型)
private void button2_Click(object sender, EventArgs e)
{
//1、APM 异步编程模型,Asynchronous Programming Model
//C#1[基于IAsyncResult接口实现BeginXXX和EndXXX的方法]
Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId); var request = WebRequest.Create("https://github.com/");
request.BeginGetResponse(new AsyncCallback(t =>//执行完成后的回调
{
var response = request.EndGetResponse(t);
var stream = response.GetResponseStream();//获取返回数据流 using (StreamReader reader = new StreamReader(stream))
{
StringBuilder sb = new StringBuilder();
while (!reader.EndOfStream)
{
var content = reader.ReadLine();
sb.Append(content);
}
Debug.WriteLine("【Debug】" + sb.ToString().Trim().Substring(, ) + "...");//只取返回内容的前100个字符
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
label1.Invoke((Action)(() => { label1.Text = "执行完毕!"; }));//这里跨线程访问UI需要做处理
}
}), null); Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId);
}
【效果图】
看图得知:
- 启用异步方法并没有是UI界面卡死
- 异步方法启动了另外一个ID为12的线程
上面代码执行顺序:
前面我们说过,APM的BebinXXX必须返回IAsyncResult接口。那么接下来我们分析IAsyncResult接口:
首先我们看:
确实返回的是IAsyncResult接口。那IAsyncResult到底长的什么样子?:
并没有想象中的那么复杂嘛。我们是否可以尝试这实现这个接口,然后显示自己的异步方法呢?
首先定一个类MyWebRequest,然后继承IAsyncResult:(下面是基本的伪代码实现)
public class MyWebRequest : IAsyncResult
{
public object AsyncState
{
get { throw new NotImplementedException(); }
} public WaitHandle AsyncWaitHandle
{
get { throw new NotImplementedException(); }
} public bool CompletedSynchronously
{
get { throw new NotImplementedException(); }
} public bool IsCompleted
{
get { throw new NotImplementedException(); }
}
}
这样肯定是不能用的,起码也得有个存回调函数的属性吧,下面我们稍微改造下:
然后我们可以自定义APM异步模型了:(成对的Begin、End)
public IAsyncResult MyBeginXX(AsyncCallback callback)
{
var asyncResult = new MyWebRequest(callback, null);
var request = WebRequest.Create("https://github.com/");
new Thread(() => //重新启用一个线程
{
using (StreamReader sr = new StreamReader(request.GetResponse().GetResponseStream()))
{
var str = sr.ReadToEnd();
asyncResult.SetComplete(str);//设置异步结果
} }).Start();
return asyncResult;//返回一个IAsyncResult
} public string MyEndXX(IAsyncResult asyncResult)
{
MyWebRequest result = asyncResult as MyWebRequest;
return result.Result;
}
调用如下:
private void button4_Click(object sender, EventArgs e)
{
Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId);
MyBeginXX(new AsyncCallback(t =>
{
var result = MyEndXX(t);
Debug.WriteLine("【Debug】" + result.Trim().Substring(, ) + "...");
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
}));
Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId);
}
效果图:
我们看到自己实现的效果基本上和系统提供的差不多。
- 启用异步方法并没有是UI界面卡死
- 异步方法启动了另外一个ID为11的线程
【总结】
个人觉得APM异步模式就是启用另外一个线程执行耗时任务,然后通过回调函数执行后续操作。
APM还可以通过其他方式获取值,如:
while (!asyncResult.IsCompleted)//循环,直到异步执行完成 (轮询方式)
{
Thread.Sleep();
}
var stream2 = request.EndGetResponse(asyncResult).GetResponseStream();
或
asyncResult.AsyncWaitHandle.WaitOne();//阻止线程,直到异步完成 (阻塞等待)
var stream2 = request.EndGetResponse(asyncResult).GetResponseStream();
补充:如果是普通方法,我们也可以通过委托异步:(BeginInvoke、EndInvoke)
public void MyAction()
{
var func = new Func<string, string>(t =>
{
Thread.Sleep();
return "name:" + t + DateTime.Now.ToString();
}); var asyncResult = func.BeginInvoke("张三", t =>
{
string str = func.EndInvoke(t);
Debug.WriteLine(str);
}, null);
}
EAP
EAP 基于事件的异步模式,Event-based Asynchronous Pattern
此模式在C#2的时候随之而来。
先来看个EAP的例子:
private void button3_Click(object sender, EventArgs e)
{
Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId); BackgroundWorker worker = new BackgroundWorker();
worker.DoWork += new DoWorkEventHandler((s1, s2) =>
{
Thread.Sleep();
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
});//注册事件来实现异步
worker.RunWorkerAsync(this);
Debug.WriteLine("【Debug】主线程ID:" + Thread.CurrentThread.ManagedThreadId);
}
【效果图】(同样不会阻塞UI界面)
【特征】
- 通过事件的方式注册回调函数
- 通过 XXXAsync方法来执行异步调用
例子很简单,但是和APM模式相比,是不是没有那么清晰透明。为什么可以这样实现?事件的注册是在干嘛?为什么执行RunWorkerAsync会触发注册的函数?
感觉自己又想多了...
我们试着反编译看看源码:
只想说,这么玩,有意思吗?
TAP
TAP 基于任务的异步模式,Task-based Asynchronous Pattern
到目前为止,我们觉得上面的APM、EAP异步模式好用吗?好像没有发现什么问题。再仔细想想...如果我们有多个异步方法需要按先后顺序执行,并且需要(在主进程)得到所有返回值。
首先定义三个委托:
public Func<string, string> func1()
{
return new Func<string, string>(t =>
{
Thread.Sleep();
return "name:" + t;
});
}
public Func<string, string> func2()
{
return new Func<string, string>(t =>
{
Thread.Sleep();
return "age:" + t;
});
}
public Func<string, string> func3()
{
return new Func<string, string>(t =>
{
Thread.Sleep();
return "sex:" + t;
});
}
然后按照一定顺序执行:
public void MyAction()
{
string str1 = string.Empty, str2 = string.Empty, str3 = string.Empty;
IAsyncResult asyncResult1 = null, asyncResult2 = null, asyncResult3 = null;
asyncResult1 = func1().BeginInvoke("张三", t =>
{
str1 = func1().EndInvoke(t);
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
asyncResult2 = func2().BeginInvoke("", a =>
{
str2 = func2().EndInvoke(a);
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
asyncResult3 = func3().BeginInvoke("男", s =>
{
str3 = func3().EndInvoke(s);
Debug.WriteLine("【Debug】异步线程ID:" + Thread.CurrentThread.ManagedThreadId);
}, null);
}, null);
}, null); asyncResult1.AsyncWaitHandle.WaitOne();
asyncResult2.AsyncWaitHandle.WaitOne();
asyncResult3.AsyncWaitHandle.WaitOne();
Debug.WriteLine(str1 + str2 + str3);
}
除了难看、难读一点好像也没什么 。不过真的是这样吗?
asyncResult2是null?
由此可见在完成第一个异步操作之前没有对asyncResult2进行赋值,asyncResult2执行异步等待的时候报异常。那么如此我们就无法控制三个异步函数,按照一定顺序执行完成后再拿到返回值。(理论上还是有其他办法的,只是会然代码更加复杂)
是的,现在该我们的TAP登场了。
只需要调用Task类的静态方法Run,即可轻轻松松使用异步。
获取返回值:
var task1 = Task<string>.Run(() =>
{
Thread.Sleep();
Console.WriteLine("【Debug】task1 线程ID:" + Thread.CurrentThread.ManagedThreadId);
return "张三";
});
//其他逻辑
task1.Wait();
var value = task1.Result;//获取返回值
Console.WriteLine("【Debug】主 线程ID:" + Thread.CurrentThread.ManagedThreadId);
现在我们处理上面多个异步按序执行:
Console.WriteLine("【Debug】主 线程ID:" + Thread.CurrentThread.ManagedThreadId);
string str1 = string.Empty, str2 = string.Empty, str3 = string.Empty;
var task1 = Task.Run(() =>
{
Thread.Sleep();
str1 = "姓名:张三,";
Console.WriteLine("【Debug】task1 线程ID:" + Thread.CurrentThread.ManagedThreadId);
}).ContinueWith(t =>
{
Thread.Sleep();
str2 = "年龄:25,";
Console.WriteLine("【Debug】task2 线程ID:" + Thread.CurrentThread.ManagedThreadId);
}).ContinueWith(t =>
{
Thread.Sleep();
str3 = "爱好:妹子";
Console.WriteLine("【Debug】task3 线程ID:" + Thread.CurrentThread.ManagedThreadId);
}); Thread.Sleep();//其他逻辑代码 task1.Wait(); Debug.WriteLine(str1 + str2 + str3);
Console.WriteLine("【Debug】主 线程ID:" + Thread.CurrentThread.ManagedThreadId);
[效果图]
我们看到,结果都得到了,且是异步按序执行的。且代码的逻辑思路非常清晰。如果你感受还不是很大,那么你现象如果是100个异步方法需要异步按序执行呢?用APM的异步回调,那至少也得异步回调嵌套100次。那代码的复杂度可想而知。
延伸思考
WaitOne完成等待的原理
异步为什么会提升性能
线程的使用数量和CPU的使用率有必然的联系吗
问题1:WaitOne完成等待的原理
在此之前,我们先来简单的了解下多线程信号控制AutoResetEvent类。
var _asyncWaitHandle = new AutoResetEvent(false);
_asyncWaitHandle.WaitOne();
此代码会在 WaitOne 的地方会一直等待下去。除非有另外一个线程执行 AutoResetEvent 的set方法。
var _asyncWaitHandle = new AutoResetEvent(false);
_asyncWaitHandle.Set();
_asyncWaitHandle.WaitOne();
如此,到了 WaitOne 就可以直接执行下去。没有有任何等待。
现在我们对APM 异步编程模型中的 WaitOne 等待是不是知道了点什么呢。我们回头来实现之前自定义异步方法的异步等待。
public class MyWebRequest : IAsyncResult
{
//异步回调函数(委托)
private AsyncCallback _asyncCallback;
private AutoResetEvent _asyncWaitHandle;
public MyWebRequest(AsyncCallback asyncCallback, object state)
{
_asyncCallback = asyncCallback;
_asyncWaitHandle = new AutoResetEvent(false);
}
//设置结果
public void SetComplete(string result)
{
Result = result;
IsCompleted = true;
_asyncWaitHandle.Set();
if (_asyncCallback != null)
{
_asyncCallback(this);
}
}
//异步请求返回值
public string Result { get; set; }
//获取用户定义的对象,它限定或包含关于异步操作的信息。
public object AsyncState
{
get { throw new NotImplementedException(); }
}
// 获取用于等待异步操作完成的 System.Threading.WaitHandle。
public WaitHandle AsyncWaitHandle
{
//get { throw new NotImplementedException(); } get { return _asyncWaitHandle; }
}
//获取一个值,该值指示异步操作是否同步完成。
public bool CompletedSynchronously
{
get { throw new NotImplementedException(); }
}
//获取一个值,该值指示异步操作是否已完成。
public bool IsCompleted
{
get;
private set;
}
}
红色代码就是新增的异步等待。
【执行步骤】
问题2:异步为什么会提升性能
比如同步代码:
Thread.Sleep();//假设这是个访问数据库的方法
Thread.Sleep();//假设这是个访问翻墙网站的方法
这个代码需要20秒。
如果是异步:
var task = Task.Run(() =>
{
Thread.Sleep();//假设这是个访问数据库的方法
});
Thread.Sleep();//假设这是个访问翻墙网站的方法
task.Wait();
如此就只要10秒了。这样就节约了10秒。
如果是:
var task = Task.Run(() =>
{
Thread.Sleep();//假设这是个访问数据库的方法
});
task.Wait();
异步执行中间没有耗时的代码那么这样的异步将是没有意思的。
或者:
var task = Task.Run(() =>
{
Thread.Sleep();//假设这是个访问数据库的方法
});
task.Wait();
Thread.Sleep();//假设这是个访问翻墙网站的方法
把耗时任务放在异步等待后,那这样的代码也是不会有性能提升的。
还有一种情况:
如果是单核CPU进行高密集运算操作,那么异步也是没有意义的。(因为运算是非常耗CPU,而网络请求等待不耗CPU)
问题3:线程的使用数量和CPU的使用率有必然的联系吗
答案是否。
还是拿单核做假设。
情况1:
long num = ;
while (true)
{
num += new Random().Next(-,);
//Thread.Sleep(100);
}
单核下,我们只启动一个线程,就可以让你CPU爆满。
启动八次,八进程CPU基本爆满。
情况2:
一千多个线程,而CPU的使用率竟然是0。由此,我们得到了之前的结论,线程的使用数量和CPU的使用率没有必然的联系。
虽然如此,但是也不能毫无节制的开启线程。因为:
- 开启一个新的线程的过程是比较耗资源的。(可是使用线程池,来降低开启新线程所消耗的资源)
- 多线程的切换也是需要时间的。
- 每个线程占用了一定的内存保存线程上下文信息。
demo:http://pan.baidu.com/s/1slOxgnF
本文已同步至索引目录:《C#基础知识巩固》
对于异步编程了解不深,文中极有可能多处错误描述和观点。
感谢广大园友的指正。
本着相互讨论的目的,绝无想要误导大家的意思。
【推荐】
http://www.cnblogs.com/wisdomqq/archive/2012/03/26/2412349.html
C#异步的世界【上】的更多相关文章
- 【转】C#异步的世界【上】
[转]C#异步的世界[上] 新进阶的程序员可能对async.await用得比较多,却对之前的异步了解甚少.本人就是此类,因此打算回顾学习下异步的进化史. 本文主要是回顾async异步模式之前的异步,下 ...
- C#异步的世界【下】
接上篇:<C#异步的世界[上]> 上篇主要分析了async\await之前的一些异步模式,今天说异步的主要是指C#5的async\await异步.在此为了方便的表述,我们称async\aw ...
- 【转】C#异步的世界【下】
[转]C#异步的世界[下] 接上篇:<C#异步的世界[上]> 上篇主要分析了async\await之前的一些异步模式,今天说异步的主要是指C#5的async\await异步.在此为了方便的 ...
- C#异步的世界【下】(转)
接上篇:<C#异步的世界[上]> 上篇主要分析了async\await之前的一些异步模式,今天说异步的主要是指C#5的async\await异步.在此为了方便的表述,我们称async\aw ...
- 为什么我会认为SAP是世界上最好用最牛逼的ERP系统,没有之一?
为什么我认为SAP是世界上最好用最牛逼的ERP系统,没有之一?玩过QAD.Tiptop.用友等产品,深深觉得SAP是贵的有道理! 一套好的ERP系统,不仅能够最大程度承接适配企业的管理和业务流程,在技 ...
- Nivo Slider - 世界上最棒的 jQuery 图片轮播插件
Nivo Slider 号称世界上最棒的图片轮播插件,有独立的 jQuery 插件和 WordPress 插件两个版本.目前下载量已经突破 1,800,000 次!jQuery 独立版本的插件主要有如 ...
- 世界上不存在什么RedBSD,SuseBSD或者ArchBSD,Turb...
世界上不存在什么RedBSD,SuseBSD或者ArchBSD,TurboBSD之类的东西.
- hdu---(4515)小Q系列故事——世界上最遥远的距离(模拟题)
小Q系列故事——世界上最遥远的距离 Time Limit: 500/200 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)T ...
- Git是目前世界上最先进的分布式版本控制系统
一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. 二:SVN与Git的最主要的区别? SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的电脑,所以 ...
- 世界上最方便的SharePoint移动客户端--Rshare
Rshare我试用了一段时间,同时也测试了其他家产品,使用后的感觉是Rshare无愧于世界上最方面的SharePoint移动客户端. 1.界面设计很方便,设计中充分考虑到移动客户的使用习惯及喜好,设计 ...
随机推荐
- Android Intent 三解决
Intent的接收处理: 1.Receiver报名 这之前已经被引入 然后看看剩下的两个接收功能上面. scheduleReceiver scheduleRegisteredReceiver: sch ...
- Andorid类似Fragment更换布置方法
public void replaceRightView(View v) { int f = LinearLayout.LayoutParams.MATCH_PARENT; LinearLayout. ...
- 02.零成本实现WEB性能测试-基于APACHE JMETER
书评: 1.这本是介绍性能测试工具Jmeter的书籍,维度还够,但是粒度太粗. 2.对于想快速了解JMeter的使用和工具的原件使用,还是有一定的参考价值. 3.实际上,这本书可用来快速入门,掌握和了 ...
- 【C#版本详情回顾】C#4.0主要功能列表
诊断和性能 从 .NET Framework 4 开始,您可以获得每个应用程序域的处理器使用情况和内存使用情况估计值 通过托管承载 API.本机承载 API 以及 Windows 事件跟踪 (ETW) ...
- [Android] 获取WebView的页面标题(Title)-----WebChromeClient.onReceivedTitle()方法的重写
应用开发中需要获取WebView当前页面的标题,可能通过对WebChromeClient.onReceivedTitle()方法的重写来实现 效果图如下: 代码如下: public class Mai ...
- MVC如何在Pipeline中接管请求的?
MVC如何在Pipeline中接管请求的? 文章内容 上个章节我们讲到了,可以在HttpModules初始化之前动态添加Route的方式来自定义自己的HttpHandler,最终接管请求的,那MVC是 ...
- 收缩SQL Server日志不是那么简单
收缩SQL Server日志不是那么简单的(翻译) 原文地址:http://rusanu.com/2012/07/27/how-to-shrink-the-sql-server-log/ 说明:本 ...
- 通过Func 委托理解委托和匿名方法及Lambda 表达式
Func<T, TResult> 委托 封装一个具有一个参数并返回 TResult 参数指定的类型值的方法. 命名空间: System 程序集: mscorlib(在 mscorlib.d ...
- 批量转换cue文件编码
之前在网上下载的无损(flac.ape),好多都是整盘的,也就是说一个flac或ape文件搭配一个cue分轨文件,这个文件记录着在不同时间段是哪一首歌曲. 由于之前的操作都是在windows下进行的, ...
- BFS和DFS详解
BFS和DFS详解以及java实现 前言 图在算法世界中的重要地位是不言而喻的,曾经看到一篇Google的工程师写的一篇<Get that job at Google!>文章中说到面试官问 ...