题目链接:最强跳蚤

  这道题本来不想写博客的……但是鉴于自己犯了低级错误,还是写篇博客记载一下。

  一开始我的想法和题解里面的算法而比较类似,也是先分解质因数,然后用质因子是否出现偶数次来判断当前这个数是否是完全平方数……

  然而这样并不能AC,于是我去翻了题解……\(get\)了一个新做法,就是给每个出现过的质因子赋一个\([0,2^{64})\)的随机值,那么判断一个质因子是否出现偶数次就只需要判断异或和是否为零了。算一算可以发现冲突的概率非常小(但是我不会算)。

  然后……我就愉快的写了一发树分治……就当我练了一发板子好了(正好保存一份树分治板子)……

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010
#define maxp 10010
#define mod 999983 using namespace std;
typedef unsigned long long llg; int pri[maxp],lp,a[maxn],la,n,d[maxn];
int head[maxn],next[maxn<<1],to[maxn<<1],tt;
int w[maxn],siz[maxn],maxv[maxn],ld;
int h1[mod],n1[mod],ci[mod],_t,hd[mod],_d;
llg c1[maxn],val[maxn],c[maxn<<1],ans,INF,t1[mod];
bool vis[maxn]; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} llg ra(){llg x=(llg)rand()*(llg)rand()+(llg)rand();return x==INF?ra():x;}
void link(int x,int y){
to[++tt]=y;next[tt]=head[x];head[x]=tt;
to[++tt]=x;next[tt]=head[y];head[y]=tt;
} void pre(){
for(int i=2;i<maxp;i++){
if(!vis[i]) pri[++lp]=i;
for(int j=1;j<=lp && pri[j]*i<maxp;j++){
vis[pri[j]*i]=1;
if(!(i%pri[j])) break;
}
}
for(int i=1;i<=lp;i++) val[i]=ra();
} void dfs1(int u,int fa){
siz[u]=1; maxv[u]=0; d[++ld]=u;
for(int i=head[u],v;v=to[i],i;i=next[i])
if(!vis[v] && v!=fa){
dfs1(v,u),siz[u]+=siz[v];
maxv[u]=max(maxv[u],siz[v]);
}
} void dfs2(int u,llg now){
vis[u]=1; c1[++ld]=now; if(!now) ans++;
for(int i=head[u],v;v=to[i],i;i=next[i])
if(!vis[v]) dfs2(v,now^c[i]);
vis[u]=0;
} int find(llg x){
int u=x%mod;
for(int i=h1[u];i;i=n1[i])
if(t1[i]==x) return i;
return 0;
} int insert(llg x){
int j=find(x);
if(j){ci[j]++;return j;}
int u=x%mod; hd[++_d]=u; ci[++_t]=1;
t1[_t]=x; n1[_t]=h1[u];h1[u]=_t;
return _t;
} void solve(int u){
ld=0; dfs1(u,0); int _k=n+1,k;
for(int i=1,l,x;l=d[i],i<=ld;i++){
x=max(maxv[l],siz[u]-siz[l]);
if(x<_k) _k=x,k=l;
}
vis[k]=1; ld=_d=0;
for(int i=head[k];i;i=next[i])
if(!vis[to[i]]){
ld=0; dfs2(to[i],c[i]); sort(c1+1,c1+ld+1);
for(int j=1,k;k=j,j<=ld;j=k+1){
while(k<ld && c1[k+1]==c1[j]) k++;
ans+=(llg)(ci[find(c1[j])])*(llg)(k-j+1);
}
for(int j=1,k,x;k=j,j<=ld;j=k+1){
while(k<ld && c1[k+1]==c1[j]) k++;
x=insert(c1[j]); ci[x]+=k-j;
}
}
for(int i=1;i<=_d;i++) h1[hd[i]]=0; _t=0;
for(int i=head[k];i;i=next[i])
if(!vis[to[i]]) solve(to[i]);
} int main(){
File("a");
pre(); n=getint(); INF--;
for(int i=1,pos;i<n;i++){
link(getint(),getint());
w[i]=getint();
for(int j=1;pri[j]*pri[j]<=w[i];j++){
pos=0;
while(!(w[i]%pri[j]))
w[i]/=pri[j],pos^=1;
if(pos) c[tt]^=val[j];
}
if(w[i]!=1 && w[i]<maxp) c[tt]^=val[lower_bound(pri+1,pri+lp+1,w[i])-pri],w[i]=1;
if(w[i]!=1) a[++la]=w[i]; c[tt-1]=c[tt];
}
sort(a+1,a+la+1); la=unique(a+1,a+la+1)-a-1;
for(int i=1;i<=la;i++) val[i]=ra();
for(int i=1;i<n;i++)
if(w[i]>1){
c[i<<1]^=val[lower_bound(a+1,a+la+1,w[i])-a];
c[i*2-1]=c[i<<1];
}
for(int i=1;i<maxp;i++) vis[i]=0; solve(1);
printf("%lld\n",ans<<1);
return 0;
}

  这道题既然是要异或和为零,那么何必树分治呢?我们只需\(dfs\)一遍,记录每个节点到根的异或和,然后两个节点之间的异或和就可以由这两个节点到根的异或和异或得到。因为\(lca\)上面那一截会消掉……

  这已经不是第一次犯这种低级错误了,所以我在这里记录下来。代码比之前短了很多,也快了很多,感人(强行增加复杂度我就是个\(zz\))

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010
#define maxp 10010
#define mod 999983 using namespace std;
typedef unsigned long long llg; int pri[maxp],lp,a[maxn],la,n,w[maxn],ld;
int head[maxn],next[maxn<<1],to[maxn<<1],tt;
llg c[maxn<<1],ans,val[maxn],d[maxn];
bool vis[maxn]; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} llg ra(){return (llg)rand()*(llg)rand()+(llg)rand();}
void link(int x,int y){
to[++tt]=y;next[tt]=head[x];head[x]=tt;
to[++tt]=x;next[tt]=head[y];head[y]=tt;
} void pre(){
for(int i=2;i<maxp;i++){
if(!vis[i]) pri[++lp]=i;
for(int j=1;j<=lp && pri[j]*i<maxp;j++){
vis[pri[j]*i]=1;
if(!(i%pri[j])) break;
}
}
for(int i=1;i<=lp;i++) val[i]=ra();
} void dfs(int u,int fa,llg now){
d[++ld]=now;
for(int i=head[u],v;v=to[i],i;i=next[i])
if(v!=fa) dfs(v,u,now^c[i]);
} int main(){
File("a");
pre(); n=getint();
for(int i=1,pos;i<n;i++){
link(getint(),getint());
w[i]=getint();
for(int j=1;pri[j]*pri[j]<=w[i];j++){
pos=0;
while(!(w[i]%pri[j]))
w[i]/=pri[j],pos^=1;
if(pos) c[tt]^=val[j];
}
if(w[i]!=1 && w[i]<maxp) c[tt]^=val[lower_bound(pri+1,pri+lp+1,w[i])-pri],w[i]=1;
if(w[i]!=1) a[++la]=w[i]; c[tt-1]=c[tt];
}
sort(a+1,a+la+1); la=unique(a+1,a+la+1)-a-1;
for(int i=1;i<=la;i++) val[i]=ra();
for(int i=1;i<n;i++)
if(w[i]>1){
c[i<<1]^=val[lower_bound(a+1,a+la+1,w[i])-a];
c[i*2-1]=c[i<<1];
}
dfs(1,0,0); sort(d+1,d+ld+1);
for(int i=1,j;j=i,i<=ld;i=j+1){
while(j<ld && d[j+1]==d[i]) j++;
ans+=(llg)(j-i)*(llg)(j-i+1);
}
printf("%lld\n",ans);
return 0;
}

UOJ #192 【UR #14】 最强跳蚤的更多相关文章

  1. 【uoj#192】[UR #14]最强跳蚤 Hash

    题目描述 给定一棵 $n$ 个点的树,边有边权.求简单路径上的边的乘积为完全平方数的点对 $(x,y)\ ,\ x\ne y$ 的数目. 题解 Hash 一个数是完全平方数,当且仅当每个质因子出现次数 ...

  2. 【胡策篇】题解 (UOJ 192 + CF938G + SPOJ DIVCNT2)

    和泉纱雾与烟花大会 题目来源: UOJ 192 最强跳蚤 (只改了数据范围) 官方题解: 在这里哦~(说的很详细了 我都没啥好说的了) 题目大意: 求树上各边权乘积是完全平方数的路径数量. 这种从\( ...

  3. UOJ#192. 【UR #14】最强跳蚤

    题目链接 http://uoj.ac/problem/192 暑期课第二天 树上问题进阶 具体内容看笔记博客吧 题意 n个节点的树T 边有边权w 求满足(u, v)上所有边权乘积为完全平方数的路径有多 ...

  4. (GDOI2018模拟九)【UOJ#192】【UR#14】最强跳蚤

    (开头先Orz myh) 原题目: 在人类和跳蚤的战争初期,人们凭借着地理优势占据了上风——即使是最强壮的跳蚤,也无法一下越过那一堵坚固的城墙. 在经历了惨痛的牺牲后,跳蚤国王意识到再这样下去,跳蚤国 ...

  5. uoj192 【UR #14】最强跳蚤

    题目 和成爷达成一致,被卡随机的话就是过了 考虑一个完全平方数的所有质因子次幂一定是偶数,于是对于每一条边我们都只保留其出现次数为奇数的质因子 注意到有一个点的\(w\leq 80\),于是考虑状压质 ...

  6. UOJ 【UR #5】怎样跑得更快

    [UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...

  7. UOJ192 最强跳蚤

    题目链接 problem 给出一个n个点带边权的树,问有多少对\((u,v)\)满足\(u\)到\(v\)路径上边权的乘积为完全平方数. \(n\le 10^5,w\le 10^8\) solutio ...

  8. UOJ #22 UR #1 外星人

    LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...

  9. UOJ.52.[UR #4]元旦激光炮(交互 思路)

    题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...

随机推荐

  1. git rebase 使用

    git rebase 不会取回代码 要用git fetch先取回, git rebase 是合并代码. (1)首先用git fetch返回服务器上的代码 (2)首先用git rebase origin ...

  2. 为什么有时候必须添加sys.setdefaultencoding('utf-8')

    今天在尝试Python的CGI模块时遇到中文字符不能正确显示的问题,很郁闷.在网上仔细找了找,终于解决了这个问题,现在将解决方法陈述如下,以防下次失误. 页面源代码如下 #-*- coding: ut ...

  3. 网络层 IP 协议首部格式与其配套使用的四个协议(ARP,RARP,ICMP,IGMP)

    目录 IP协议首部格式地址解析协议 ARP逆向地址解析协议 RARP网际控制报文协议 ICMP网际组管理协议IGMP IP 数据报首部 IP数据报首部格式: 最高位在左边,记为0 bit:最低位在右边 ...

  4. Cisco 绑定mac地址

    在Cisco中有以下三种方案可供选择,方案1和方案2实现的功能是一样的,即在具体的交换机端口上绑定特定的主机的MAC地址(网卡硬件地址),方案3是在具体的交换机端口上同时绑定特定的主机的MAC地址(网 ...

  5. 简单的js实现网页时钟

    js实现时钟. <div id="clock"></div> <script type="text/javascript"> ...

  6. 使用VNC远程管理VPS(Centos系统)

    首先安装桌面环境,我选择的是xfce,轻量级桌面,小巧实用不占太多内存,(占用内存方面,xfce<kde,kde<gnome). centos默认源里面没有xfce,首先安装epel源,然 ...

  7. Struts2.3.16日志(中)

    Result Configuration --Result 配置 当一个操作类方法完成后,它将返回一个字符串.字符串的值是用来选择一个元素的结果.一个操作映射的结果往往会有一组代表不同的可能的结果.一 ...

  8. DEDECMS整站复制

    1. 登录你的网站(织梦系统DedeCMS)后台,到“系统”–“系统设置”–“数据库备份/还原”,点击“数据备份选择”下面的“提交”: 2.拷贝备份的数据库文件到根目录/data/backupdata ...

  9. JOptionPane的使用

    最近在做swing程序中遇到使用消息提示框的,JOptionPane类其中封装了很多的方法. 很方便的,于是就简单的整理了一下. 1.1 showMessageDialog 显示一个带有OK 按钮的模 ...

  10. 从url中提取参数名和参数值(转)

    在已知参数名的情况下,获取参数值,使用正则表达式能很容易做到.js的实现方法如下: function getValue(url, name) { var reg = new RegExp('(\\?| ...