【题意】n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui]。B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数。当有一位同学的一门必修课分数不同时视为两种情况不同。n,m<=100,Ui<=10^9。

【算法】计数DP+排列组合+拉格朗日插值

【题解】把分数作为状态不现实,只能逐门课考虑。

设$f[i][j]$表示前i门课,有j个同学被碾压的情况数,则有:

$$f[i][j]=g(i)\cdot\sum_{k=j}^{n}f[i-1][k]\cdot\binom{k}{k-j}\cdot\binom{n-k-1}{r_i-1-k+j}$$

解释:首先可以发现当天分数需要高于B神的人数是确定的,和多少人被碾压等信息无关,所以令g(i)表示第i门课的合法分数情况数,独立计算。

枚举前i-1门课被碾压的人数k,那么ri-1由两部分组成,一部分是不再被碾压的k-j人(从k人中选出),剩余的ri-1-k+j人从原本就未被碾压的n-k-1人中选出。

考虑计算g(i),枚举B神的分数i,则有r-1人的选择范围是[i+1,Ui],另外n-r人的选择范围是[1,i],即:

$$g(i)=\sum_{i=1}^{U_i}(U_i-i)^{r_i-1}*i^{n-r}$$

Ui太大了,考虑将Ui当成自变量后用拉格朗日插值解决,即:

$$f(x)=\sum_{i=1}^{x}(x-i)^{r-1}*i^{n-r}$$

现在我们要求f(Ui)的值,需要确定多项式的次数。网上的解释都看不懂,强行理解:令i=x/2,那么式子右边的i也可以表示为(n-i),合并后次数为n-1,再加上Σ的上届为x,那么最高次就是n,这是一个n次多项式。

于是我们可以对每个i,O(n^2)枚举前n+1个点的值来插值得到f(Ui)。DP转移的复杂度也是O(n)的。

总复杂度O(n^3)。

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=,MOD=1e9+;
int v[maxn],n,m,kind,u[maxn],r[maxn],g[maxn],f[maxn][maxn],c[maxn][maxn];
int power(int x,int k){int ans=;while(k){if(k&)ans=1ll*ans*x%MOD;x=1ll*x*x%MOD;k>>=;}return ans;}
int inv(int x){return power(x,MOD-);}
int M(int x){return x>=MOD?x-MOD:x;}
int solve(int u,int r){
for(int x=;x<=n+;x++){
g[x]=;//!
for(int i=;i<=x;i++){
g[x]=M(g[x]+1ll*power(x-i,r-)*power(i,n-r)%MOD);
}
if(x==u)return g[x];
}
for(int i=;i<=n+;i++){
v[i]=;
for(int j=;j<=n+;j++)if(i!=j)v[i]=1ll*v[i]*(i-j+MOD)%MOD;
v[i]=inv(v[i]);
}
int ans=;
for(int i=;i<=n+;i++){
int w=1ll*g[i]*v[i]%MOD;
for(int j=;j<=n+;j++)if(i!=j)w=1ll*w*(u-j+MOD)%MOD;//i!=j
ans=M(ans+w);
}
return ans;
}
int main(){
scanf("%d%d%d",&n,&m,&kind);
for(int i=;i<=n;i++){
c[i][]=;
for(int j=;j<=i;j++){
c[i][j]=M(c[i-][j-]+c[i-][j]);
}
}
for(int i=;i<=m;i++)scanf("%d",&u[i]);
for(int i=;i<=m;i++)scanf("%d",&r[i]);
f[][n-]=;
for(int i=;i<=m;i++){
int g=solve(u[i],r[i]);
for(int j=kind;j<=n;j++){
for(int k=j;k<=n;k++)if(r[i]--k+j>=&&r[i]--k+j<=n-k-){
f[i][j]=M(f[i][j]+1ll*f[i-][k]*c[k][k-j]%MOD*c[n-k-][r[i]--k+j]%MOD);
}
f[i][j]=1ll*f[i][j]*g%MOD;
}
}
printf("%d",f[m][kind]);
return ;
}

【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值的更多相关文章

  1. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  2. bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...

  3. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

  4. ●BZOJ 4559 [JLoi2016]成绩比较

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 计数dp,拉格朗日插值法.真的是神题啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊啊 ...

  5. bzoj 4559 [JLoi2016]成绩比较——拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 关于拉格朗日插值,可以看这些博客: https://www.cnblogs.com/E ...

  6. P3270 [JLOI2016]成绩比较 容斥 数论 组合数学 拉格朗日插值

    LINK:成绩比较 大体思路不再赘述 这里只说几个我犯错的地方. 拉格朗日插值的时候 明明是n次多项式 我只带了n个值进去 导致一直GG. 拉格朗日插值的时候 由于是从1开始的 所以分母是\((i-1 ...

  7. ●BZOJ 4559 [JLoi2016]成绩比较(容斥)

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 容斥,拉格朗日插值法. 结合网上的另一种方法,以及插值法,可以把本题做到 O( ...

  8. G.subsequence 1(dp + 排列组合)

    subsequence 1 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K 64bit IO Format: %lld 题目描述 You are ...

  9. bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...

随机推荐

  1. Delphi中使用OLE方法操作Excel

    首先创建 Excel 对象,使用ComObj: var ExcelApp: Variant; ExcelApp := CreateOleObject( ′Excel.Application′ ); 注 ...

  2. 减小Delphi 2010/delphi XE编译出来的文件大小

    1.禁用RTTI 禁用的方法很简单,就是要在工程(dpr文件中.Delphi2010下项目文件是dproj文件,但dpr文件仍然是默认的编写代码的项目文件)的Uses语句前添加下面的定义就可以了: { ...

  3. 基于html5的多图片上传,预览

    基于html5的多图片上传 本文是建立在张鑫旭大神的多文图片传的基础之上. 首先先放出来大神多图片上传的博客地址:http://www.zhangxinxu.com/wordpress/2011/09 ...

  4. 新手向:Vue 2.0 的建议学习顺序

    新手向:Vue 2.0 的建议学习顺序 尤雨溪   1 年前 注:2.0 已经有中文文档 .如果对自己英文有信心,也可以直接阅读英文文档.此指南仅供参考,请根据自身实际情况灵活调整.欢迎转载,请注明出 ...

  5. es6 let关键字

    1.let关键字 var arr = [ ]; for(var i=0; i<10; i++){ arr [i] = function(){ alert(i) } } arr [8](); // ...

  6. SpringBoot(五)_表单验证

    SpringBoot(五)_表单验证 参数校验在我们日常开发中非常常见,最基本的校验有判断属性是否为空.长度是否符合要求等,在传统的开发模式中需要写一堆的 if else 来处理这些逻辑,很繁琐,效率 ...

  7. Java override 和 overload 的区别和联系

    方法的重写(Overriding)和重载(Overloading)是Java多态性的不同表现.重写(Overriding)是父类与子类之间多态性的一种表现,而重载(Overloading)是一个类中多 ...

  8. Mxnet Windows配置

    MXNET Windows 编译安装(Python) 本文只记录Mxnet在windows下的编译安装,更多环境配置请移步官方文档:http://mxnet.readthedocs.io/en/lat ...

  9. 怎么解决Xing欲

    怎么解决Xing欲 来源:微信号 王路在隐身 这是知乎上的一道问题.原题叫<和尚怎么解决性欲>. 本来由出家人回答更合适,但估计出家人一般不太愿意回答. 我看了几十个答案,几乎都是在调侃出 ...

  10. 服务器启动完成执行定时任务Timer,TimerTask

    由于项目需求:每隔一段时间就要调外部接口去进行某些操作,于是在网上找了一些资料,用了半天时间弄好了,代码: import java.util.TimerTask; public class Accou ...