【bzoj3527】 Zjoi2014—力
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 (题目链接)
题意
$${F_i=\sum_{j<i} {\frac{q_iq_j}{(i-j)^2}} - \sum_{j>i} {\frac{q_iq_j}{(i-j)^2}}}$$
给出${q_i}$求${E_i=F_i/q_i}$
Solution
这能一眼秒是卷积w(゚Д゚)w,我怎么完全看不出来,这太强了吧。。
两边同时约掉一个${q_i}$,式子就变的和谐了很多:$${E_i=\sum_{j<i} {\frac{q_j}{(i-j)^2}} - \sum_{j>i} {\frac{q_j}{(i-j)^2}}}$$
然后到这里我就不知道了。。听说要构造两个多项式,然后${E_i}$就可以表示为他们乘积的某一项的系数。。$${A(x)=\sum_{i=0}^{n-1} q_{i+1}*x^i}$$$${B(x)=\sum_{i=0}^{n-2}{-\frac{x^i}{(n-i-1)^2}} + 0*x^{n-1} + \sum_{i=n}^{2n-2} {\frac{x^i}{(n-i+1)^2}}}$$
最后只要输出第${n}$项到第${2n-1}$项的系数就是答案。
一脸懵逼→_→
细节
注意数组大小,注意下标与次数
代码
// bzoj3527
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<complex>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; typedef complex<double> E;
const int maxn=200010;
E a[maxn<<2],b[maxn<<2];
int n,m; namespace FFT {
int rev[maxn<<3],L;
void FFT(E *a,int f) {
for (int i=0;i<m;i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=1;i<m;i<<=1) {
E wn(cos(Pi/i),f*sin(Pi/i));
for (int p=i<<1,j=0;j<m;j+=p) {
E w(1,0);
for (int k=0;k<i;k++,w*=wn) {
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;a[j+k+i]=x-y;
}
}
}
}
void Init() {
int k=n*3-3;
for (m=1;m<=k;m<<=1) L++;
for (int i=0;i<m;i++) rev[i]=(rev[i>>1]>>1) | ((i&1)<<(L-1));
FFT(a,1);FFT(b,1);
for (int i=0;i<m;i++) a[i]*=b[i];
FFT(a,-1);
}
} int main() {
scanf("%d",&n);
double x;
for (int i=1;i<=n;i++) scanf("%lf",&x),a[i-1]=x;
for (int i=0;i<=n-2;i++) b[i]=-1.0/(n-1-i)/(n-1-i);
for (int i=n;i<=2*n-2;i++) b[i]=1.0/(n-1-i)/(n-1-i);
FFT::Init();
for (int i=n-1;i<2*n-1;i++) printf("%.3lf\n",a[i].real()/m);
return 0;
}
【bzoj3527】 Zjoi2014—力的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- [bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014 题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\lim ...
- bzoj3527: [Zjoi2014]力
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
- BZOJ3527 [Zjoi2014]力 【fft】
题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过 ...
- bzoj千题计划167:bzoj3527: [Zjoi2014]力
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 以n=4为例: ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
- [BZOJ3527][ZJOI2014]力:FFT
分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑 ...
随机推荐
- NO--16 vue之父子组件传值
先创建项目并运行 vue init webpack-simple templatecd templatenpm inpm run dev 一.子组件访问父组件的数据 方式一 :子组件直接访问父组件的数 ...
- Spring Boot之拦截器与过滤器(完整版)
作者:liuxiaopeng 链接:http://www.cnblogs.com/paddix 作者:蓝精灵lx原文:https://blog.csdn.net/liuxiao723846/artic ...
- python装饰器(披着羊皮的狼)
python装饰器的作用是在不改变原有函数的基础上,对函数的功能进行增加或者修改. 装饰器语法是python语言更加优美且避免很多繁琐的事情,flask中配置路由的方式便是装饰器. 首先python中 ...
- openstack系列文章(一)
学习openstack的系列文章-虚拟化 虚拟化 KVM CPU 虚拟化 KVM 内存虚拟化 全虚拟化 I/O 设备 半虚拟化 I/O 设备 I/O PCI PCIe 设备直接分配 SR-IOV 在 ...
- shell--read命令
read命令 -p(提示语句) -n(字符个数) -t(等待时间) -s(不回显) 1.基本读取read命令接收标准输入(键盘)的输入,或其他文件描述符的输入(后面在说).得到输入后,read命令将数 ...
- JVM调优(2)
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理内存限制.32位系统下,一般限制在1.5G~2G:64为操作 ...
- 忘记本地MySQL数据库密码的解决方案。
忘记本地MySQL数据库密码,解决方案,分以下10个步骤: 参考链接: https://blog.csdn.net/weidong_y/article/details ...
- 实验三 敏捷开发和XP实验
课程:Java程序设计实验 班级:1352 姓名: 于佳心 学号:20135206 成绩: 指导教师:娄嘉鹏 ...
- Beta 冲刺 (6/7)
队名:Boy Next Door 燃尽图 代码写入 https://github.com/mangoqiqi/paybook/tree/master/Desktop/Web%E8%B4%A6%E5%8 ...
- Scrum 项目7.0——第一个Sprint的总结和读后感
总结: 通过这一次的Sprint,我了解了Sprint的整个流程,也学会了编制backlog,也了解了在软件工程中,一个团队的任务是怎么样分配和一个项目是怎么样开展的.从对软件工程的认识只 ...