Portal -->agc001D

Description

  给你一个\(m\)个数的排列\(A\),这个\(A\)中元素的顺序可以随便调换,\(A\)中的元素的和为\(n\),现在要你构造一个数组\(B\)(长度为\(m1\)),满足:如果一个字符串同时满足:

1、头\(A_1\)个字符,接下来的\(A_2\)个字符,接下来的\(A_3\)个字符...接下来的\(A_m\)个字符分别构成回文串

2、头\(B_1\)个字符,接下来的\(B_2\)个字符,接下来的\(B_3\)个字符...接下来的\(B_{m1}\)个字符分别构成回文串

  那么这个字符串中每一个位置上的字符都一样

  

Solution

  日常不会构造题。。。qwq

  

  有一个比较好的想法就是。。画蚊香。。大概是这样:

​  这个图对应的是\(A=\{3,2\}\)\(B=\{4,1\}\)

​  然后我们要做的就是。。使得连完线之后可以一笔画

​  然后发现如果说出现一个长度为奇数的回文串,最中间的那个点就会没有线连,然后为了让它和其他的点连上,这个点的度数必须是\(1\),然后为了保证一笔画,这样的点必须至多出现两个,所以奇数长度的回文串至多只能有两个,否则就无解了,然后多画几组会发现。。如果出现奇数长度的回文串它们还必须出现在一头一尾qwq

​  那么剩下的就是构造啦

  当全部都是偶数的时候,我们在最开头先放一个\(1\),这样后面就错开了,然后第\(1\)到\(m-1\)都可以直接复制下来,至于最后一个回文串,我们可以放一堆\(2\)中间夹一个\(1\)这样(具体自己画一下就知道了)

  当有一个奇数的时候,我们把它放在\(A\)的最后,\(B\)的前面部分的构造方式同上,最后一个长度为奇数的回文串就简单一些,直接全部上\(2\)就好了

  当有两个奇数的时候,我们将其放在一头一尾,然后\(B\)的第一个元素设成\(A_1+1\),这样后面的情况就和只有一个奇数、并且已经放了一个\(1\)的情况一样了,剩下的构造同上

  

  代码大概长这个样子

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=1e5+10;
int a[N],b[N*2],lis[3];
int n,m,cnt;
bool firstcheck(){
int cnt=0;
for (int i=1;i<=n;++i)
cnt+=a[i]&1;
return cnt<=2;
}
void get_b(){
int sum;
if (cnt==0){
b[++b[0]]=1; sum=m-1;
for (int i=1;i<n;++i) b[++b[0]]=a[i],sum-=a[i];
if (sum==0) return;
sum-=1; sum/=2;
for (int i=1;i<=sum/2;++i) b[++b[0]]=2;
b[++b[0]]=1;
for (int i=sum/2+1;i<=sum;++i) b[++b[0]]=2;
}
else if (cnt==1){
b[++b[0]]=1;
for (int i=1;i<n;++i) b[++b[0]]=a[i];
for (int i=1;i<=(a[n]-1)/2;++i) b[++b[0]]=2;
}
else{
b[++b[0]]=a[1]+1;
for (int i=2;i<n;++i) b[++b[0]]=a[i];
for (int i=1;i<=(a[n]-1)/2;++i) b[++b[0]]=2;
}
} int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%d",&m,&n);
for (int i=1;i<=n;++i) scanf("%d",a+i);
if (!firstcheck()){printf("Impossible\n"); return 0;}
cnt=0;
for (int i=1;i<=n;++i){
if ((a[i]&1))
lis[++cnt]=i;
}
if (lis[1]) swap(a[n],a[lis[1]]);
if (lis[2]) swap(a[1],a[lis[2]]);
for (int i=1;i<=n;++i) printf("%d ",a[i]); printf("\n"); get_b();
printf("%d\n",b[0]);
for (int i=1;i<=b[0];++i) printf("%d ",b[i]); printf("\n");
}

【agc001d】Arrays and Palindrome的更多相关文章

  1. 【NOIP2017提高A组模拟9.12】Arrays and Palindrome

    [NOIP2017提高A组模拟9.12]Arrays and Palindrome[SPJ] 题目 Description Input Output Sample Input 1 6 Sample O ...

  2. 【LeetCode】9、Palindrome Number(回文数)

    题目等级:Easy 题目描述: Determine whether an integer is a palindrome. An integer is a palindrome when it rea ...

  3. 【LeetCode】680. Valid Palindrome II

    Difficulty:easy  More:[目录]LeetCode Java实现 Description https://leetcode.com/problems/valid-palindrome ...

  4. 【HDOJ6599】I Love Palindrome String(PAM,manacher)

    题意:给出一个由小写字母组成的长为n的字符串S,定义他的子串[L,R]为周驿东串当且仅当[L,R]为回文串且[L,(L+R)/2]为回文串 求i=[1,n] 所有长度为i的周驿东串的个数 n<= ...

  5. 【原】Arrays.binarySearch() 的用法

    Arrays.binarySearch() 的用法 1.binarySearch(Object[] a, Object key) Searches the specified array for th ...

  6. 【LeetCode】125. Valid Palindrome

    题目: Given a string, determine if it is a palindrome, considering only alphanumeric characters and ig ...

  7. 【easy】479. Largest Palindrome Product

    Find the largest palindrome made from the product of two n-digit numbers Since the result could be v ...

  8. 【leetcode】409. Longest Palindrome

    problem 409. Longest Palindrome solution1: class Solution { public: int longestPalindrome(string s) ...

  9. 【LeetCode】214. Shortest Palindrome

    Shortest Palindrome Given a string S, you are allowed to convert it to a palindrome by adding charac ...

随机推荐

  1. 如何批量删除QQ浏览器指定历史记录和导出指定的历史记录

    QQ浏览器的历史记录只有清空历史记录和删除选中项两个功能.有时我不想删除所有的历史记录,只是想删除指定的历史记录保留对自己有用的历史记录,方便自己以后查找.但是删除选中项功能只能一项一项的选择,才能批 ...

  2. Acer 4750G安装OS X 10.9 DP4(简版)

    一.下载os x 10.9懒人版:http://bbs.pcbeta.com/viewthread-1384504-1-1.html 二.用系统自带的磁盘分区工具划分一个5G左右的临时安装盘(新建分区 ...

  3. exec命令详解

    基础命令学习目录首页 原文链接: exec: 在bash下输入man exec,找到exec命令解释处,可以看到有”No new process is created.”这样的解释,这就是说exec命 ...

  4. 2017秋软工 —— 本周PSP

    1. PSP 2. PSP饼图 3. 累计进度条 4. 累计折线图

  5. HDU 1003 最大连续子段和

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)M ...

  6. 在数组中找出两数之和为10的所有组合(JAVA)

    /*利用冒泡排序实现*/ import java.util.Scanner;public class Paixun { public static void main(String[] args) { ...

  7. 网络1711-12&信管1711-12 图 作业评分

    先放上本次作业的推荐博客,以及评分细则总表,在最后,会放几张图表对本学期大家的成果进行一个小小的总结,有兴趣的同学可以看看,感受一下自己这个学期的积累和进步.(主要针对网络的同学,信管的同学只有两次作 ...

  8. Internet History, Technology and Security (Week 7)

    Week 7 Technology: Application Protocols Welcome to Week 7 of IHTS. This week has less material than ...

  9. 开放地址法散列表ADT

    数据结构定义如下: typedef unsigned int Index; typedef Index Position; struct HashTbl; typedef struct HashTbl ...

  10. #Leetcode# 707. Design Linked List

    https://leetcode.com/problems/design-linked-list/ Design your implementation of the linked list. You ...