BZOJ1188:[HNOI2007]分裂游戏(博弈论)
Description
Input
Output
Sample Input
4
1 0 1 5000
3
0 0 1
Sample Output
1
-1 -1 -1
0
Solution
首先可以发现,若一个位置豆子是偶数,且先手取了这个位置,显然后手可以通过进行和先手相同的操作来抵消这一步。
所以就可以把每个位置的豆子数$mod~2$,并将他们看成一个单独的游戏,同时记搜一下这个游戏的$SG$值。
虽然把每个豆子看成单独的游戏,但显然他们的$SG$值是可以共用的。
记忆化搜索每个豆子的$SG$值,当前是第$i$个位置的话显然有多种后继状态,每一种的$SG$值是$SG[j]~xor~SG[k]$。因为当前第$i$个位置的后继状态可以看做是$j$和$k$两个子局面的$SG$值异或得到总局面$SG$值。
输出方案就枚举三个位置$i,j,k$,如果全局异或值$ ~xor~ SG[i] ~xor~ SG[j] ~xor~ SG[k]=0$,那么说明先手取完这三个位置之后后手就必输了。
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (30009)
using namespace std; int T,n,ans,tot,a[N],SG[N],vis[N]; int DFS(int x)
{
if (SG[x]!=-) return SG[x];
for (int i=x+; i<=n; ++i)
for (int j=i; j<=n; ++j)
vis[DFS(i)^DFS(j)]=x;
int p=;
while (vis[p]==x) p++;
return SG[x]=p;
} int main()
{
scanf("%d",&T);
while (T--)
{
memset(SG,-,sizeof(SG));
memset(vis,,sizeof(vis));
ans=; tot=;
scanf("%d",&n);
for (int i=; i<=n; ++i)
scanf("%d",&a[i]);
for (int i=; i<=n; ++i) DFS(i);
for (int i=; i<=n; ++i)
if (a[i]&) ans^=SG[i];
for (int i=; i<=n; ++i)
for (int j=i+; j<=n; ++j)
for (int k=j; k<=n; ++k)
if ((ans^SG[i]^SG[j]^SG[k])==)
{
if (!tot) printf("%d %d %d\n",i-,j-,k-);
++tot;
}
if (!tot) puts("-1 -1 -1");
printf("%d\n",tot);
}
}
BZOJ1188:[HNOI2007]分裂游戏(博弈论)的更多相关文章
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- [bzoj1188][HNOI2007]分裂游戏_博弈论
分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...
- [BZOJ1188][HNOI2007]分裂游戏(博弈论)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1188 分析: 设SG[i]表示一个石子在位置i上的SG值 这个很容易暴力求,因为i的后 ...
- 【博弈论】【SG函数】【枚举】bzoj1188 [HNOI2007]分裂游戏
因为第i个瓶子里的所有豆子都是等价的,设sg(i)表示第i个瓶子的sg值,可以转移到sg(j)^sg(k)(i<j<n,j<=k<n)的状态. 只需要考虑豆子数是奇数的瓶子啦, ...
- BZOJ1188 [HNOI2007]分裂游戏(SG函数)
传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...
- bzoj1188: [HNOI2007]分裂游戏
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...
- [HNOI2007]分裂游戏 博弈论
题面 题面 题解 这题的思路比较特别,观察到我们的每次操作实质上是对于一颗豆子的操作,而不是对一瓶豆子的操作,因此我们要把每颗豆子当做一个独立的游戏,而它所在的瓶子代表了它的SG值. 瓶子数量很少,因 ...
- 【BZOJ1188】分裂游戏(博弈论)
[BZOJ1188]分裂游戏(博弈论) 题面 BZOJ 洛谷 题解 这道题目比较神仙. 首先观察结束状态,即\(P\)状态,此时必定是所有的豆子都在最后一个瓶子中. 发现每次的转移一定是拿出一棵豆子, ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
随机推荐
- [日常] crontab的秒执行和串行化和多进程实现
1. crontab的最低运行频率是,按照每分钟执行一次,通过在脚本中简单实现按秒级别运行 比如这条cron规则 , 每分钟执行一次脚本 * * * * * php /var/www/html/tes ...
- [javaSE] 数组(排序-冒泡排序)
两层嵌套循环,外层控制循环次数,内层循环进行比较 for(int x=0;x<arr.length-1;x++){ for(int y=0;y<arr.length;y++){ if(ar ...
- java 全自动生成Excel之ExcelUtil篇(上一篇的升级版 [针对实体类对象的遍历赋值])
看了上一篇随笔之后可以对本篇有更好的了解! 使用的poi的jar包依然是上一篇的poi-3.17.jar.... import pojo.UserPojo(上一篇里有,这里就不粘贴了!) 不废话了,直 ...
- Java异常(一)Java异常简介及其框架
Java异常(一)Java异常简介及其框架 概要 本章对Java中的异常进行介绍.内容包括:Java异常简介Java异常框架 Java异常简介 Java异常是Java提供的一种识别及响应错误的一致性机 ...
- 使用DOM创建xml文件
使用DOM创建xml文件 创建xml的代码如下: public class CreateXML { public static void main(String[] args) { DocumentB ...
- Windows下Sqlplus中显示乱码
set NLS_LANG=SIMPLIFIED CHINESE_CHINA.ZHS16GBK 如果想显示英文 Set nls_lang=american_america.zhs16gbk 注意,前提是 ...
- Element ui 中使用table组件实现分页记忆选中
我们再用vue和element-ui,或者其他的表格的时候,可能需要能记忆翻页勾选,那么实现以下几个方法就ok了 示例如下 <el-table :data="tableData&quo ...
- [js常用]将秒转化为时分秒
内容引入至网络 <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" ...
- opencv3.2.0形态学滤波之形态学梯度、顶帽、黑帽
/*一.形态学梯度 (1)含义:是膨胀图和腐蚀图之差 (2)数学表达式:dst=morph-grad(src,element) =dilate(src,element) - erode(src,ele ...
- 如何调试flutter应用
The Dart Analyzer 这个工具帮助你分析代码,发现可能的错误. 运行命令行 终端进入flutter工程所在目录,执行flutter analyze 使用IntelliJ IDEA Dar ...