SPOJ-SUBSET Balanced Cow Subsets
嘟嘟嘟spoj
嘟嘟嘟vjudge
嘟嘟嘟luogu
这个数据范围都能想到是折半搜索。
但具体怎么搜呢?
还得扣着方程模型来想:我们把题中的两个相等的集合分别叫做左边和右边,令序列前一半中放到左边的数为\(a\),右边的数为\(b\),后一半同理为\(c\)和\(d\)。则我们要找的就是满足\(a + c = b + d\)的选取方案。
然后变形\(a - b = d - c\)。因此我们只要在前一半枚举\(a, b\),存起来,然后在后一半枚举\(c, d\),然后查找\(d - c\)是否出现过。
注意不是每一个数都要选,所以枚举的时候有三种情况:1.不选。2.选到左边。3.选到右边。所以复杂度为\(O(3 ^ {\frac{n}{2}})\)。
还有一点就是状态判重,这个用二进制表示就行。
具体实现就是用\(map\)离散化\(a - b\),然后因为\(a - b\)可能由好多种选取方案得来的,所以开一个\(vector\)记录每一个\(a - b\)对应的状态。统计答案的时候用一个\(bool\)数组判重即可。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<map>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 22;
const int maxp = 1.2e6 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n, m;
ll a[maxn];
int cnt = 0;
map<int, int> mp;
vector<int> v[maxp];
bool vis[maxp];
void dfs1(int stp, ll tot, int now)
{
if(stp > m)
{
if(mp.find(tot) == mp.end()) mp[tot] = ++cnt;
v[mp[tot]].push_back(now); return;
}
dfs1(stp + 1, tot, now);
dfs1(stp + 1, tot + a[stp], now + (1 << (stp - 1)));
dfs1(stp + 1, tot - a[stp], now + (1 << (stp - 1)));
}
void dfs2(int stp, ll tot, int now)
{
if(stp > n)
{
if(mp.find(tot) == mp.end()) return;
int id = mp[tot];
for(int i = 0; i < (int)v[id].size(); ++i) vis[v[id][i] | now] = 1;
return;
}
dfs2(stp + 1, tot, now);
dfs2(stp + 1, tot + a[stp], now + (1 << (stp - 1)));
dfs2(stp + 1, tot - a[stp], now + (1 << (stp - 1)));
}
int main()
{
n = read(); m = n >> 1;
for(int i = 1; i <= n; ++i) a[i] = read();
dfs1(1, 0, 0); dfs2(m + 1, 0, 0);
int ans = 0;
for(int i = 1; i < maxp; ++i) ans += (int)vis[i];
write(ans), enter;
return 0;
}
SPOJ-SUBSET Balanced Cow Subsets的更多相关文章
- 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469
题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...
- BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针
BZOJ_2679_[Usaco2012 Open]Balanced Cow Subsets _meet in middle+双指针 Description Farmer John's owns N ...
- bzoj2679: [Usaco2012 Open]Balanced Cow Subsets(折半搜索)
2679: [Usaco2012 Open]Balanced Cow Subsets Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 462 Solv ...
- 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)
[Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...
- [Usaco2012 Open]Balanced Cow Subsets
Description Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk ...
- BZOJ.2679.Balanced Cow Subsets(meet in the middle)
BZOJ 洛谷 \(Description\) 给定\(n\)个数\(A_i\).求它有多少个子集,满足能被划分为两个和相等的集合. \(n\leq 20,1\leq A_i\leq10^8\). \ ...
- BZOJ2679 : [Usaco2012 Open]Balanced Cow Subsets
考虑折半搜索,每个数的系数只能是-1,0,1之中的一个,因此可以先通过$O(3^\frac{n}{2})$的搜索分别搜索出两边每个状态的和以及数字的选择情况. 然后将后一半的状态按照和排序,$O(2^ ...
- bzoj2679:[Usaco2012 Open]Balanced Cow Subsets
思路:折半搜索,每个数的状态只有三种:不选.选入集合A.选入集合B,然后就暴搜出其中一半,插入hash表,然后再暴搜另一半,在hash表里查找就好了. #include<iostream> ...
- 【BZOJ】2679: [Usaco2012 Open]Balanced Cow Subsets
[算法]折半搜索+数学计数 [题意]给定n个数(n<=20),定义一种方案为选择若干个数,这些数可以分成两个和相等的集合(不同划分方式算一种),求方案数(数字不同即方案不同). [题解] 考虑直 ...
随机推荐
- MyEclipse设置选中单词其它同名单词前景色和背景色
General->Editors->Annotations->Occurrences
- 第一节:Java初识与计算机基础
一.计算机 = 硬件 + 软件 1.硬件:计算机中看的见摸得着的物理元件,例如:CPU(中央处理器).内存条.硬盘... CPU:计算机的运算和控制核心,主要用于对数据的逻辑运算以及对计算机指令的解析 ...
- 莫名其妙的标记之@noescape
Swift 中经常遇到一些不熟悉的关键字, 例如@autoclosure, @noescape...等等, 为什么要加这样的关键字, 我自己写方法的时候什么时候要加, 什么时候不加, 都是应该考虑的问 ...
- wamp 安装monggo扩展
1.下载对应的monggo扩展 http://pecl.php.net/package/mongo 2. 找对应的版本 放在D:\program\wamp\bin\php\php5.5.12\ext ...
- redis事务报错No ongoing transaction. Did you forget to call multi?
场景:需要存两条数据到redis中,并且两条要么都存要么都不存,需要事务来控制 Spring Data Redis的RedisTemplate提供了MULTI.EXEC命令进行封装,远看可以解决问题, ...
- CSS预编译器:Sass(进阶),更快的前端开发
1.@if @if 指令是一个 SassScript,它可以根据条件来处理样式块,如果条件为 true 返回一个样式块,反之 false 返回另一个样式块 在 Sass 中除了 @if 之,还 ...
- Asp.net MVC 移除不用的视图引擎
Asp.net MVC 默认提供两个视图引擎,分别为: WebFormViewEngine 和 RazorViewEngine.MVC在查找视图时,会按照指定的顺序进行查找.当我们的MVC程序未找到相 ...
- linux客户端打印报表时操作系统的配置
报表打印是用applet方式操作的,所以客户端要有jre环境.如果客户端是windows系统的话,安装jre环境比较方便:如果客户端是linux系统的话,即使服务器端reportConfig.x ...
- sqlserver为数据库表增加自增字段
需求: 数据库为SQLServer.对已有的数据库表customer加一个序号字段,一次性对所有现存客户加上编号,并在新建客户时自动增加一个编号,数值自增1. 解决方法: 1. 复制表结构.把原 ...
- FastDFS部署安装全过程
你好!欢迎阅读我的博文,你可以跳转到我的个人博客网站,会有更好的排版效果和功能. 此外,本篇博文为本人Pushy原创,如需转载请注明出处:https://pushy.site/posts/153205 ...