P4197 Peaks
题目描述
在Bytemountains有N座山峰,每座山峰有他的高度\(h_i\)。有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1。
输入输出格式
输入格式:
第一行三个数N,M,Q。 第二行N个数,第ii个数为\(h_i\) 接下来MM行,每行33个数a,b,c,表示从a到b有一条困难值为c的双向路径。 接下来Q行,每行三个数v,x,k,表示一组询问。
输出格式:
对于每组询问,输出一个整数表示答案。
输入输出样例
输入样例#1: 复制
10 11 4
1 2 3 4 5 6 7 8 9 10
1 4 4
2 5 3
9 8 2
7 8 10
7 1 4
6 7 1
6 4 8
2 1 5
10 8 10
3 4 7
3 4 6
1 5 2
1 5 6
1 5 8
8 9 2
输出样例#1: 复制
6
1
-1
8
说明
数据范围
\(N \le 10^5, 0 \le M,Q \le 5\times 10^5,h_i,c,x \le 10^9\)。
kruskal重构树
对于每一个节点其子树的叶子就是在这个点的权值内能相互到达的点
按照dfs序建可持久化权值线段树,dfs序\(u\)到\(u+size[u]\)内每个点的增量就是\(pre[u]\)子树的点
每次查询时把\(v\)倍增跳到\(\leq x\)的最大值,在\((dfn[x]+size[x])-(dfn[x]-1)\)的线段树内找第\(k\)大节点即可
恩......













#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define M (200005*10)
#define N 200005
#define LL long long
#define max(a,b) ((a)>(b)? (a):(b))
#define min(a,b) ((a)<(b)? (a):(b))
using namespace std;
int top[N],d[M],h[N],ls[M],rs[M],n,m,q,cnt,f[N],edge[N],cnt1,y;
int head[N],ver[N],nex[N],dfn[N],df,pre[M],g,z[N],pp[N],v,x,k,bz[N][26],s[N],az[N][26];
struct vv{ int f,t,edge;} a[M];
inline bool cmp(vv a,vv b) {return a.edge<b.edge;}
inline char gc()
{
static char now[1<<22],*S,*T;
if (T==S)
{
T=(S=now)+fread(now,1,1<<22,stdin);
if (T==S) return EOF;
}
return *S++;
}
inline int gtt()
{
register int x=0,f=1;
register char ch=gc();
while(!isdigit(ch))
{
if (ch=='-') f=-1;
ch=gc();
}
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=gc();
return x*f;
}
inline void add(int x,int y)
{
cnt1+=1;
ver[cnt1]=y; nex[cnt1]=head[x]; head[x]=cnt1;
}
int ff(int x)
{
if(f[x]==x) return x;
f[x]=ff(f[x]);
return f[x];
}
inline void kru()
{
for(int i=1;i<=m;i++)
{
int w=ff(a[i].f), e=ff(a[i].t);
if(w!=e)
{
f[w]=f[e]=++n;
add(n,w); add(n,e);
edge[n]=a[i].edge;
}
}
}
void dfs(int now)
{
bz[now][0]=edge[now];
s[now]=1; dfn[now]=++df; pre[df]=now;
for(int i=head[now];i;i=nex[i])
{
int t=ver[i];
dfs(t);
bz[t][1]=edge[now];
az[t][1]=now;
s[now]+=s[t];
}
}
void built(int now,int l,int r,int pre,int z)
{
if(l==r)
{
d[now]=d[pre]+1;
return;
}
int mid=(l+r)>>1; ls[now]=ls[pre]; rs[now]=rs[pre];
if(z<=mid)
{
ls[now]=++cnt;
built(ls[now],l,mid,ls[pre],z);
}
if(z>mid)
{
rs[now]=++cnt;
built(rs[now], mid+1, r, rs[pre], z);
}
d[now]=d[ls[now]]+d[rs[now]];
}
void built1(int now,int l,int r)
{
if(l==r) return;
ls[now]=++cnt; rs[now]=++cnt;
int mid=(l+r)>>1;
built1(ls[now], l, mid);
built1(rs[now], mid+1, r);
}
int find(int now1,int now2,int l,int r,int z)
{
if(l==r) return l;
if(d[now2]-d[now1]<z) return -1;
int mid=(l+r)>>1;
if(d[rs[now2]]-d[rs[now1]]>=z) return find(rs[now1], rs[now2], mid+1, r, z);
return find(ls[now1], ls[now2], l, mid, z-d[rs[now2]]+d[rs[now1]]);
}
int main()
{
n=gtt(); m=gtt(); q=gtt(); g=n;
for(int i=1;i<=4*n;i++) f[i]=i;
for(int i=1;i<=n;i++) h[i]=gtt(), z[i]=h[i];
sort(z+1,z+1+n);
int mm=unique(z+1,z+1+n)-z-1;
for(int i=1;i<=n;i++)
{
k=lower_bound(z+1,z+1+mm,h[i])-z;
pp[k]=h[i]; h[i]=k;
}
for(int i=1;i<=m;i++){ a[i].f=gtt(); a[i].t=gtt(); a[i].edge=gtt();}
sort(a+1,a+1+m,cmp); kru();
for(int i=n;i;i--) if(!dfn[i]) dfs(i);
if(g!=1){top[1]=1; cnt=1; built1(1,1,mm);}
else {top[1]=1; cnt=1;built(cnt,1,mm,0,h[pre[1]]);}
for(int i=2;i<=n;i++)
if(pre[i]<=g)
{
top[i]=++cnt;
built(cnt,1,mm,top[i-1],h[pre[i]]);
}
else top[i]=top[i-1];
for(int i=2;i<=25;i++)
for(int j=1;j<=n;j++)
bz[j][i]=bz[az[j][i-1]][i-1], az[j][i]=az[az[j][i-1]][i-1];
for(int i=1;i<=q;i++)
{
v=gtt(); x=gtt(); k=gtt();
for(int j=25;j>=1;j--) if(bz[v][j]<=x && az[v][j]) v=az[v][j];
k=find(top[dfn[v]-1],top[dfn[v]+s[v]-1],1,mm,k);
if(k!=-1)printf("%d\n",pp[k]);
else printf("-1\n");
}
}
P4197 Peaks的更多相关文章
- BZOJ 3545 / 洛谷 P4197 Peaks 解题报告
P4197 Peaks 题目描述 在\(\text{Bytemountains}\)有\(N\)座山峰,每座山峰有他的高度\(h_i\).有些山峰之间有双向道路相连,共\(M\)条路径,每条路径有一个 ...
- [luogu P4197] Peaks 解题报告(在线:kruskal重构树+主席树 离线:主席树+线段树合并)
题目链接: https://www.luogu.org/problemnew/show/P4197 题目: 在Bytemountains有N座山峰,每座山峰有他的高度$h_i$.有些山峰之间有双向道路 ...
- Luogu P4197 Peaks
题目链接 \(Click\) \(Here\) 做法:\(Kruskal\)重构树上跑主席树 构造方法:把每条边拆出来成一个点,点权是原先的边权.每次连边的时候,连的不再是点,而是其原先点所在的联通块 ...
- 洛谷P4197 Peaks&&克鲁斯卡尔重构树学习笔记(克鲁斯卡尔重构树+主席树)
传送门 据说离线做法是主席树上树+启发式合并(然而我并不会) 据说bzoj上有强制在线版本只能用克鲁斯卡尔重构树,那就好好讲一下好了 这里先感谢LadyLex大佬的博客->这里 克鲁斯卡尔重构树 ...
- 洛谷P4197 Peaks(Kruskal重构树 主席树)
题意 题目链接 往后中文题就不翻译了qwq Sol 又是码农题..出题人这是强行把Kruskal重构树和主席树拼一块了啊.. 首先由于给出的限制条件是<=x,因此我们在最小生成树上走一定是最优的 ...
- P4197 Peaks [克鲁斯卡尔重构树 + 主席树][克鲁斯卡尔重构树学习笔记]
Problem 在\(Bytemountains\)有\(n\)座山峰,每座山峰有他的高度\(h_i\) .有些山峰之间有双向道路相连,共\(M\)条路径,每条路径有一个困难值,这个值越大表示越难走, ...
- 洛谷P4197 Peaks (Kruskal重构树)
读题,只经过困难值小于等于x的路径,容易想到用Kruskal重构树:又要查询第k高的山峰,我们选择用主席树求解. 先做一棵重构树,跑一遍dfs,重构树中每一个非叶子节点对应一段区间,我们开range[ ...
- Luogu_4197 Peaks
P4197 Peaks 并不会克鲁斯卡尔重构树,于是就写了离线算法. 使用了最小生成树,启发式合并treap 在最小生成树,克鲁斯卡尔算法 时 ,将询问一块处理.便可以保证询问时边的要求.然后利用平衡 ...
- kruscal重构树略解
我们先看一道题:Luogu P4197 Peaks 这道题珂以用启发式合并+主席树来做 那么强制在线呢?(bzoj 3551 [ONTAK2010]Peaks加强版) 离线做法就不行了 我们就要用一个 ...
随机推荐
- SEDA架构程序实现
一.SEDA SEDA全称是:stage event driver architecture,中文直译为“分阶段的事件驱动架构”,它旨在结合事件驱动和多线程模式两者的优点,从而做到易扩展,解耦合,高并 ...
- 19、网络编程 (Socket套接字编程)
网络模型 *A:网络模型 TCP/IP协议中的四层分别是应用层.传输层.网络层和链路层,每层分别负责不同的通信功能,接下来针对这四层进行详细地讲解. 链路层:链路层是用于定义物理传输通道,通常是对某些 ...
- 350-两个阵列的交叉点II
给定两个数组,编写一个函数来计算它们的交集. 例1: 输入: nums1 = [1,2,2,1],nums2 = [2,2] 输出:[2,2] 例2: 输入: nums1 = [4,9,5],,nu ...
- mysql,存储引擎,事务,锁,慢查询,执行计划分析,sql优化
基础篇:MySql架构与存储引擎 逻辑架构图: 连接层: mysql启动后(可以把mysql类比为一个后台的服务器),等待客户端请求,当请求到来后,mysql建立一个一个线程处理(线程池则分配一个空线 ...
- POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6383 Accepted: 2043 ...
- 项目Debug版本与Release版本的区别
Debug版本:通常称为调试版本,它包含调试信息,并且不作任何优化,便于程序员调试程序. Release版本:称为发布版本,它往往是进行了各种优化,使得程序在代码大小和运行速度上都是最优的,以便用户很 ...
- CodeForces760B
B. Frodo and pillows time limit per test:1 second memory limit per test:256 megabytes input:standard ...
- markdown 语法备忘
markdwon语法, 增加以下CSS代码,可以对markdwon语法产生的文件进行分页操作. <div style="page-break-after:always;"&g ...
- BZOJ2663 [Beijing wc2012]灵魂宝石
Description 平面中有\(n\)个黑点和\(n\)个白点.这些点组成\(n\)对,但是你不知道它们的对应关系.若某队中黑点白点距离\(<R\),则它是好的:\(>R\)则不是好的 ...
- 使用Keras进行多GPU训练 multi_gpu_model
使用Keras训练具有多个GPU的深度神经网络(照片来源:Nor-Tech.com). 摘要 在今天的博客文章中,我们学习了如何使用多个GPU来训练基于Keras的深度神经网络. 使用多个GPU使我们 ...