强连通分量算法·$tarjan$初探
嗯,今天好不容易把鸽了好久的缩点给弄完了……感觉好像……很简单?
算法的目的,其实就是在有向图上,把一个强连通分量缩成一个点……然后我们再对此搞搞事情,\(over\)
哦对,时间复杂度很显然是\(\Theta(n)\)的,懒得\(Proof\)了。
真是简明扼要的算法啊\(233\)
比较弱智的代码是下面的:
#include <stack>
#include <cstdio>
#include <iostream>
#define min Min
#define max Max
#define MAXN 10010
#define MAXM 50010
#define to(k) E[k].to
std::stack <int> S ;
struct Edge{
int to, next ;
}E[MAXM] ; int head[MAXN], vis[MAXN], c ;
int N, M, A, B, Ans, dfn[MAXN], low[MAXN], cnt ;
inline int Min(int a, int b) { return a & ((a - b) >> 31) | b & (~(a - b) >> 31) ; }
inline int Max(int a, int b) { return a & ((b - a) >> 31) | b & (~(b - a) >> 31) ; }
inline void _Add(int u, int v){ E[++ cnt].to = v, E[cnt].next = head[u], head[u] = cnt ;}
void Tarjan(int u){
S.push(u), vis[u] = 1 ;
dfn[u] = low[u] = ++ c ;
for (int k = head[u] ; k ; k = E[k].next){
if (vis[to(k)]) low[u] = min(low[u], low[to(k)]) ;
else if (!dfn[to(k)]) Tarjan(to(k)), low[u] = min(low[u], low[to(k)]) ;
}
if (dfn[u] == low[u]) ++ Ans ;
}
int main(){
int i ; std::cin >> N >> M ;
for (i = 1 ; i <= M ; ++ i) scanf("%d%d", &A, &B), _Add(A, B) ;
for (i = 1 ; i <= N ; ++ i) if (!dfn[i]) Tarjan(i) ; printf("%d", Ans) ; return 0 ;
}
十分\(zz\)的统计联通块个数……当然还有进阶版本:
\(\mathcal{Description}\)
\(\mathcal{Solution}\)
其实就是让求大小非\(1\)的联通块个数……稍微弹个栈就行了\(233\)
#include <stack>
#include <cstdio>
#include <iostream>
#define min Min
#define max Max
#define MAXN 10010
#define MAXM 50010
#define to(k) E[k].to
std::stack <int> S ;
struct Edge{
int to, next ;
}E[MAXM] ; int head[MAXN], vis[MAXN], c ;
int N, M, A, B, Ans, dfn[MAXN], low[MAXN], cnt ;
inline int Min(int a, int b) { return a & ((a - b) >> 31) | b & (~(a - b) >> 31) ; }
inline int Max(int a, int b) { return a & ((b - a) >> 31) | b & (~(b - a) >> 31) ; }
inline void _Add(int u, int v){ E[++ cnt].to = v, E[cnt].next = head[u], head[u] = cnt ;}
void Tarjan(int u){
S.push(u), vis[u] = 1 ;
dfn[u] = low[u] = ++ c ;
for (int k = head[u] ; k ; k = E[k].next){
if (vis[to(k)]) low[u] = min(low[u], low[to(k)]) ;
else if (!dfn[to(k)]) Tarjan(to(k)), low[u] = min(low[u], low[to(k)]) ;
}
if (dfn[u] == low[u]){
int t = 0 ;
while(!S.empty()){
int T = S.top() ;
++ t ; S.pop() ;
if (T == u) break ;
}
Ans += (t > 1) ;
}
}
int main(){
int i ; std::cin >> N >> M ;
for (i = 1 ; i <= M ; ++ i) scanf("%d%d", &A, &B), _Add(A, B) ;
for (i = 1 ; i <= N ; ++ i) if (!dfn[i]) Tarjan(i) ; printf("%d", Ans) ; return 0 ;
}
还有更加进阶的版本:
\(\mathcal{Description}\)
\(\mathcal{Solution}\)
就是缩完点之后跑\(DP\)……\[DP ~ in ~Graph= Floyd = \text{最短路} = SPFA\]这个题里,这个思路好像没问题……
那么就直接缩完点在联通块之间跑\(SPFA\)就行。
#include <stack>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define max Max
#define MAX 100010
#define to(k) E[k].to
using namespace std ;
stack <int> S ;
queue <int> q ;
struct Edge{
int to, next, v ;
}E[MAX] ; int A, B, N, M, Ans, tot, cnt, c ;
int head[MAX], dist[MAX], Edges[MAX][2], val[MAX] ;
int base[MAX], vis[MAX], clr[MAX], dfn[MAX], low[MAX] ;
inline void Tarjan(int now){
S.push(now), vis[now] = 1,
low[now] = dfn[now] = ++ c ;/**/
for (int k = head[now] ; k ; k = E[k].next){
if(vis[to(k)]) low[now] = min(low[now], dfn[to(k)]) ;
else if (!dfn[to(k)]) Tarjan(to(k)), low[now] = min(low[now], low[to(k)]) ;
}
if (dfn[now] == low[now]){
++ tot ;
while(!S.empty()){
int t = S.top() ;
clr[t] = tot, vis[t] = 0,
val[tot] += base[t], S.pop() ;
if (t == now) break ;
}
}
}
inline int Max(int a, int b){ return a & ((b - a) >> 31) | b & (~(b - a) >> 31) ; }
inline void Clear(){cnt = 0, fill(head, head + N + 3, 0) ; memset(E, 0, sizeof(E)) ;}
inline void _Add(int u, int v){ E[++ cnt].to = v, E[cnt].next = head[u], head[u] = cnt ;}
inline void SPFA(int x){
fill(vis, vis + N + 2, 0),
fill(dist, dist + N + 2, 0) ;
dist[x] = val[x], vis[x] = 1, q.push(x) ;
while (!q.empty()){
int now = q.front() ; q.pop(), vis[now] = 0 ;
for (int k = head[now] ; k ; k = E[k].next){
int v = E[k].to ;
if (dist[v] < dist[now] + val[v]) {
dist[v] = dist[now] + val[v] ;
if (!vis[v]) vis[v] = 1, q.push(v) ;
}
}
}
for (int i = 1 ; i <= tot ; ++ i) Ans = max(Ans, dist[i]) ;
}
int main(){
int i ; cin >> N >> M ;
for (i = 1 ; i <= N ; ++ i) scanf("%d", &base[i]) ;
for (i = 1 ; i <= M ; ++ i)
Edges[i][0] = A, Edges[i][1] = B, scanf("%d%d", &A, &B), _Add(A, B) ;
/**/for (i = 1 ; i <= N ; ++ i) if (!dfn[i]) Tarjan(i) ; Clear() ;
for (i = 1 ; i <= M ; ++ i) if (clr[Edges[i][0]] != clr[Edges[i][1]]) _Add(clr[Edges[i][0]], clr[Edges[i][1]]) ;/**/
for (i = 1 ; i <= tot ; ++ i) SPFA(i) ; printf("%d\n", Ans) ; return 0 ;
}
个人觉得缩点……没啥好说的……因为比较简单嘛……
强连通分量算法·$tarjan$初探的更多相关文章
- Tarjan的强连通分量算法
Tarjan算法用于寻找图G(V,E)中的所有强连通分量,其时间复杂度为O(|V|+|E|). 所谓强连通分量就是V的某个极大子集,其中任意两个结点u,v在图中都存在一条从u到v的路径. Tarjan ...
- 有向图的强连通分量的求解算法Tarjan
Tarjan算法 Tarjan算法是基于dfs算法,每一个强连通分量为搜索树中的一颗子树.搜索时,把当前搜索树中的未处理的结点加入一个栈中,回溯时可以判断栈顶到栈中的结点是不是在同一个强连通分量中.当 ...
- 有向图强连通分量的Tarjan算法
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...
- 强连通分量的Tarjan算法
资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...
- 有向图的强连通分量——Tarjan
在同一个DFS树中分离不同的强连通分量SCC; 考虑一个强连通分量C,设第一个被发现的点是 x,希望在 x 访问完时立刻输出 C,这样就可以实现 在同一个DFS树中分离不同的强连通分量了. 问题就转换 ...
- 有向图强连通分量 Tarjan算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 图的强连通分量-Kosaraju算法
输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 #include<iostream> #include<cstring> #include<vec ...
- POJ2186 Popular Cows 强连通分量tarjan
做这题主要是为了学习一下tarjan的强连通分量,因为包括桥,双连通分量,强连通分量很多的求法其实都可以源于tarjan的这种方法,通过一个low,pre数组求出来. 题意:给你许多的A->B ...
- 【转】有向图强连通分量的Tarjan算法
原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...
随机推荐
- MySql基本学习知识点:
1.Mysql的简介: (1):常识: MySQL是一种关系数据库管理系统,是一种开源软件 由瑞典MySQL AB公司开发,2008年1月16号被Sun公司收购.2009年,SUN又被Oracle收购 ...
- Android横、竖屏幕动态切换(layout-land 和layout-port)
下面是一个例子程序: 1.首先通过以下语句设置Activity为无标题和全屏模式: // 设置为无标题栏 requestWindowFeature(Window.FEATURE_NO_TITLE); ...
- sql 字段别名里包含特殊字符
select ename employee.name from emp; 在数据库查询时,如果列名的别名里特殊符号,报错. select ename 'employee.name' from emp; ...
- java 内存分析之堆栈空间
package Demo; public class Demo { public static void main(String[] args) { Demo demo = new Demo(); ; ...
- Oracle EBS PO 接收事务处理查不到对应的数据
1. 有一种情况是采购订单的借记账户不对 不匹配OU 2. 有可能是因为接口表卡住了 PENDING状态的把对应的数据删除掉即可 3. 接收时发生异常那个,丢失了接收头,rcv_shipment_h ...
- gridview导出数据,如果为0开头,丢失0解决方案
1.protected void GridView1_RowDataBound( object sender, GridViewRowEventArgs e ) { if (e.Row.Row ...
- 在table中选中某条数据,让其显示对应详细信息
在第一个页面中使用 ccms.dialog.open({url:url+$(this).attr("code"),id:"dialogPic",width:10 ...
- windows 端口映射
netsh interface portproxy add v4tov4 listenport=8765 listenaddress=0.0.0.0 connectaddress=172.19.24. ...
- C# HttpWebRequest 笔记
目录: 1,HttpWebRequest 实例化 2,GetResponse 获取请求结果 3,获取结果 4,获取流信息 HttpWebRequest 是一个Http 请求类,继承于 WebReque ...
- input file实现多选,限制文件上传类型,图片上传前预览功能
限制上传类型 & 多选:① accept 属性只能与 <input type="file" /> 配合使用.它规定能够通过文件上传进行提交的文件类型. ② mu ...