Python画图主要用到matplotlib这个库。具体来说是pylab和pyplot这两个子库。这两个库可以满足基本的画图需求。

pylab神器:pylab.rcParams.update(params)。这个函数几乎可以调节图的一切属性,包括但不限于:坐标范围,axes标签字号大小,xtick,ytick标签字号,图线宽,legend字号等。

具体参数参看官方文档:http://matplotlib.org/users/customizing.html


scatter和 plot 函数的不同之处

scatter才是离散点的绘制程序,plot准确来说是绘制线图的,当然也可以画离散点。

scatter/scatter3做散点的能力更强,因为他可以对散点进行单独设置
所以消耗也比plot/plot3大
所以如果每个散点都是一致的时候,还是用plot/plot3好以下
如果要做一些plot没法完成的事情那就只能用scatter了

scatter强大,但是较慢。所以如果你只是做实例中的图,plot足够了。


 plt.ion()用于连续显示。

# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()#本次运行请注释,全局运行不要注释
plt.show()

首先在python中使用任何第三方库时,都必须先将其引入。即:

import matplotlib.pyplot as plt
  • 1

或者:

from matplotlib.pyplot import *

1.建立空白图

fig = plt.figure()

也可以指定所建立图的大小

fig = plt.figure(figsize=(4,2))

也可以建立一个包含多个子图的图,使用语句:

plt.figure(figsize=(12,6))
plt.subplot(231)
plt.subplot(232)
plt.subplot(233)
plt.subplot(234)
plt.subplot(235)
plt.subplot(236)
plt.show()

其中subplot()函数中的三个数字,第一个表示Y轴方向的子图个数,第二个表示X轴方向的子图个数,第三个则表示当前要画图的焦点。

当然上述写法并不是唯一的,比如我们也可以这样写:

fig = plt.figure(figsize=(6, 6))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)
plt.show()

plt.subplot(111)和plt.subplot(1,1,1)是等价的。意思是将区域分成1行1列,当前画的是第一个图(排序由行至列)。

plt.subplot(211)意思就是将区域分成2行1列,当前画的是第一个图(第一行,第一列)。以此类推,只要不超过10,逗号就可省去。

可以看到图中的x,y轴坐标都是从0到1,当然有时候我们需要其他的坐标起始值。 
此时可以使用语句指定:

ax1.axis([-1, 1, -1, 1])

或者:

plt.axis([-1, 1, -1, 1])

效果如下:

2.向空白图中添加内容,想你所想,画你所想

首先给出一组数据:

x = [1, 2, 3, 4, 5]
y = [2.3, 3.4, 1.2, 6.6, 7.0]

A.画散点图*

plt.scatter(x, y, color='r', marker='+')
plt.show()

效果如下:

这里的参数意义:

  1. x为横坐标向量,y为纵坐标向量,x,y的长度必须一致。
  2. 控制颜色:color为散点的颜色标志,常用color的表示如下:

    b---blue   c---cyan  g---green    k----black
    m---magenta r---red w---white y----yellow

    有四种表示颜色的方式:

    • 用全名
    • 16进制,如:#FF00FF
    • 灰度强度,如:‘0.7’
  3. 控制标记风格:marker为散点的标记,标记风格有多种:

    .  Point marker
    , Pixel marker
    o Circle marker
    v Triangle down marker
    ^ Triangle up marker
    < Triangle left marker
    > Triangle right marker
    1 Tripod down marker
    2 Tripod up marker
    3 Tripod left marker
    4 Tripod right marker
    s Square marker
    p Pentagon marker
    * Star marker
    h Hexagon marker
    H Rotated hexagon D Diamond marker
    d Thin diamond marker
    | Vertical line (vlinesymbol) marker
    _ Horizontal line (hline symbol) marker
    + Plus marker
    x Cross (x) marker

B.函数图(折线图)

数据还是上面的。

fig = plt.figure(figsize=(12, 6))
plt.subplot(121)
plt.plot(x, y, color='r', linestyle='-')
plt.subplot(122)
plt.plot(x, y, color='r', linestyle='--')
plt.show()

效果如下:

这里有一个新的参数linestyle,控制的是线型的格式:符号和线型之间的对应关系

-      实线
-- 短线
-. 短点相间线
: 虚点线

另外除了给出数据画图之外,我们也可以利用函数表达式进行画图,例如:y=sin(x)

from math import *
from numpy import *
x = arange(-math.pi, math.pi, 0.01)
y = [sin(xx) for xx in x]
plt.figure()
plt.plot(x, y, color='r', linestyle='-.')
plt.show()
效果如下:

C.扇形图

示例:

import matplotlib.pyplot as plt
y = [2.3, 3.4, 1.2, 6.6, 7.0]
plt.figure()
plt.pie(y)
plt.title('PIE')
plt.show()

效果如下:

D.柱状图bar

示例:

import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [2.3, 3.4, 1.2, 6.6, 7.0] plt.figure()
plt.bar(x, y)
plt.title("bar")
plt.show()

效果如下:


E.二维图形(等高线,本地图片等)

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.image as mpimg
# 2D data delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z = Y**2 + X**2
plt.figure(figsize=(12, 6))
plt.subplot(121)
plt.contour(X, Y, Z)
plt.colorbar()
plt.title("contour") # read image img=mpimg.imread('marvin.jpg') plt.subplot(122)
plt.imshow(img)
plt.title("imshow")
plt.show()
#plt.savefig("matplot_sample.jpg")

效果图:

F.对所画图进行补充

__author__ = 'wenbaoli'

import matplotlib.pyplot as plt
from math import *
from numpy import *
x = arange(-math.pi, math.pi, 0.01)
y = [sin(xx) for xx in x]
plt.figure()
plt.plot(x, y, color='r', linestyle='-')
plt.xlabel(u'X')#fill the meaning of X axis
plt.ylabel(u'Sin(X)')#fill the meaning of Y axis
plt.title(u'sin(x)')#add the title of the figure plt.show()

效果图: 

画网络图,要用到networkx这个库,下面给出一个实例:

 
import networkx as nx
import pylab as plt
= nx.Graph()
g.add_edge(1,2,weight = 4)
g.add_edge(1,3,weight = 7)
g.add_edge(1,4,weight = 8)
g.add_edge(1,5,weight = 3)
g.add_edge(1,9,weight = 3)
 
g.add_edge(1,6,weight = 6)
g.add_edge(6,7,weight = 7)
g.add_edge(6,8,weight = 7
 
g.add_edge(6,9,weight = 6)
g.add_edge(9,10,weight = 7)
g.add_edge(9,11,weight = 6)
 
 
 
fixed_pos = {1:(1,1),2:(0.7,2.2),3:(0,1.8),4:(1.6,2.3),5:(2,0.8),6:(-0.6,-0.6),7:(-1.3,0.8), 8:(-1.5,-1), 9:(0.5,-1.5), 10:(1.7,-0.8), 11:(1.5,-2.3)} #set fixed layout location
 
 
 
#pos=nx.spring_layout(g) # or you can use other layout set in the module
nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[1,2,3,4,5],
node_color = 'g',node_size = 600)
nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(1,2),(1,3),(1,4),(1,5),(1,9)],edge_color='g',width = [4.0,4.0,4.0,4.0,4.0],label = [1,2,3,4,5],node_size = 600)
 
 
nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[6,7,8],
node_color = 'r',node_size = 600)
nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(6,7),(6,8),(1,6)],width = [4.0,4.0,4.0],edge_color='r',node_size = 600)
 
nx.draw_networkx_nodes(g,pos = fixed_pos,nodelist=[9,10,11],
node_color = 'b',node_size = 600)
nx.draw_networkx_edges(g,pos = fixed_pos,edgelist=[(6,9),(9,10),(9,11)],width = [4.0,4.0,4.0],edge_color='b',node_size = 600)
 
 
plt.text(fixed_pos[1][0],fixed_pos[1][1]+0.2, s = '1',fontsize = 40)
plt.text(fixed_pos[2][0],fixed_pos[2][1]+0.2, s = '2',fontsize = 40)
plt.text(fixed_pos[3][0],fixed_pos[3][1]+0.2, s = '3',fontsize = 40)
plt.text(fixed_pos[4][0],fixed_pos[4][1]+0.2, s = '4',fontsize = 40)
plt.text(fixed_pos[5][0],fixed_pos[5][1]+0.2, s = '5',fontsize = 40)
plt.text(fixed_pos[6][0],fixed_pos[6][1]+0.2, s = '6',fontsize = 40)
plt.text(fixed_pos[7][0],fixed_pos[7][1]+0.2, s = '7',fontsize = 40)
plt.text(fixed_pos[8][0],fixed_pos[8][1]+0.2, s = '8',fontsize = 40)
plt.text(fixed_pos[9][0],fixed_pos[9][1]+0.2, s = '9',fontsize = 40)
plt.text(fixed_pos[10][0],fixed_pos[10][1]+0.2, s = '10',fontsize = 40)
plt.text(fixed_pos[11][0],fixed_pos[11][1]+0.2, s = '11',fontsize = 40)
 
 
 
plt.show()

结果如下:


 

Python基础-画图:matplotlib的更多相关文章

  1. python基础 画图

    python 画图 matplotlib 库只保存图片,不显示图片? 在导入库时,添加如下代码 import matplotlib matplotlib.use('Agg')  各种 symbol ? ...

  2. Python基础-画图:matplotlib.pyplot.scatter

    转载自博客:https://blog.csdn.net/qiu931110/article/details/68130199 matplotlib.pyplot.scatter 1.scatter函数 ...

  3. python基础之Matplotlib库的使用一(平面图)

    在我们过去的几篇博客中,说到了Numpy的使用,我们可以生成一些数据了,下面我们来看看怎么让这些数据呈现在图画上,让我们更加直观的来分析数据. 安装过程我就不再说了,不会安装的,回去补补python最 ...

  4. 使用python中的matplotlib 画图,show后关闭窗口,继续运行命令

    使用python中的matplotlib 画图,show后关闭窗口,继续运行命令 在用python中的matplotlib 画图时,show()函数总是要放在最后,且它阻止命令继续往下运行,直到1.0 ...

  5. python基础全部知识点整理,超级全(20万字+)

    目录 Python编程语言简介 https://www.cnblogs.com/hany-postq473111315/p/12256134.html Python环境搭建及中文编码 https:// ...

  6. python数据分析使用matplotlib绘图

    matplotlib绘图 关注公众号"轻松学编程"了解更多. Series和DataFrame都有一个用于生成各类图表的plot方法.默认情况下,它们所生成的是线形图 %matpl ...

  7. Python小白的发展之路之Python基础(一)

    Python基础部分1: 1.Python简介 2.Python 2 or 3,两者的主要区别 3.Python解释器 4.安装Python 5.第一个Python程序 Hello World 6.P ...

  8. Python之路3【第一篇】Python基础

    本节内容 Python简介 Python安装 第一个Python程序 编程语言的分类 Python简介 1.Python的由来 python的创始人为吉多·范罗苏姆(Guido van Rossum) ...

  9. 第一篇:python基础

    python基础   python基础 本节内容 python起源 python的发展史 为什么选择python3 第一个python程序 变量定义 表达式和运算符 用户输入 流程控制 判断 流程控制 ...

随机推荐

  1. Linux学习3-Linux系统安装CentOS6.5

    1.启动虚拟机(虚拟机的安装参见Linux学习1-创建虚拟机) 本此安装系统:CentOS6.5         2.启动客户端后迅速按下F2键进入Bios设置,注意:启动后需鼠标点击虚拟机的屏幕并迅 ...

  2. POJ3278(KB1-C 简单搜索)

    Catch That Cow Description Farmer John has been informed of the location of a fugitive cow and wants ...

  3. Web缓存加速指南(转载)

    这是一篇知识性的文档,主要目的是为了让Web缓存相关概念更容易被开发者理解并应用于实际的应用环境中.为了简要起见,某些实现方面的细节被简化或省略了.如果你更关心细节实现则完全不必耐心看完本文,后面参考 ...

  4. HTML 5 <input> placeholder 属性 实现搜索框提示文字点击输入后消失

    H5之前要实现这个功能还要用到JS,H5出来之后新增加了placeholder属性,有了这个属性就就能轻松实现这个功能. 定义和用法 placeholder 属性提供可描述输入字段预期值的提示信息(h ...

  5. OTSU算法学习 OTSU公式证明

    OTSU算法学习   OTSU公式证明 1 otsu的公式如下,如果当前阈值为t, w0 前景点所占比例 w1 = 1- w0 背景点所占比例 u0 = 前景灰度均值 u1 = 背景灰度均值 u = ...

  6. Error:Execution failed for task ':app:transformClassesWithJarMergingForDebug

    这几天eclipse 项目迁移 android studio Error:Execution failed for task ':app:transformClassesWithJarMergingF ...

  7. 你写的什么垃圾代码让Vsync命令不能及时处理呢?(1)

    想想自己写的什么垃圾代码导致Vsync不能及时处理#(不高兴) 想不开? 实际开发中性能问题不好复现?这你就可能需要一些工具来帮你检测这种情况. 首先是Android系统自带的工具(4.1之后的版本) ...

  8. javascript 关于new()继承的笔记

    近期的一些学习总结,如有错误不严谨地方,希望指正! 使用new操作符会有如下操作: 1.创建一个对象temp = {}, 2. temp.__proto__ = A.prototype, 3. A.c ...

  9. 如何进行 Python性能分析,你才能如鱼得水?

    [编者按]本文作者为 Bryan Helmig,主要介绍 Python 应用性能分析的三种进阶方案.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 我们应该忽略一些微小的效率提升,几乎在 9 ...

  10. 使用Babel和ES7创建JavaScript模块

    [编者按]本文主要介绍通过 ES7 与 Babel 建立 JavaScript 模块.文章系国内 ITOM 管理平台 OneAPM 工程师编译呈现,以下为正文. 去年,新版的JavaScript发布了 ...