https://blog.csdn.net/dream_maker_yk/article/details/80377490

斯特林数有时并没有用。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
int n,a,b,mod,m,k,ans,fac[N],inv[N]; struct Mat{
int a[N][N];
Mat(){ memset(a,,sizeof(a)); }
}; Mat operator *(const Mat &a,const Mat &b){
Mat c;
rep(i,,m-) rep(j,,m-) if (a.a[i][j])
rep(k,,m-) if (b.a[j][k]) c.a[i][k]=(c.a[i][k]+1ll*a.a[i][j]*b.a[j][k])%mod;
return c;
} Mat ksm(const Mat &a,int b){
Mat c=a,res;
rep(i,,m-) res.a[i][i]=;
for (; b; c=c*c,b>>=)
if (b & ) res=res*c;
return res;
} int C(int n,int m){ return n<m ? : 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod; } int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} int main(){
scanf("%d%d%d%d",&n,&a,&b,&mod);
k=a+b+; m=*k;
fac[]=; rep(i,,m) fac[i]=1ll*fac[i-]*i%mod;
inv[m]=ksm(fac[m],mod-);
for (int i=m-; ~i; i--) inv[i]=1ll*inv[i+]*(i+)%mod;
Mat s; rep(i,,k-) s.a[i][i+k]=;
rep(i,,k-) rep(j,,i) s.a[j][i]=s.a[j+k][i]=C(i,j);
s=ksm(s,n); int x=,ans=;
rep(i,,b) ans=(ans+1ll*C(b,i)*x%mod*(s.a[][a+b-i]+s.a[][a+b-i+k])%mod*(((b-i)&)?-:))%mod,x=1ll*x*n%mod;
printf("%d\n",(ans+mod)%mod);
return ;
}

[BZOJ5298][CQOI2018]交错序列(DP+矩阵乘法)的更多相关文章

  1. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  2. 【bzoj2004】[Hnoi2010]Bus 公交线路 状压dp+矩阵乘法

    题目描述 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计 ...

  3. 【bzoj3329】Xorequ 数位dp+矩阵乘法

    题目描述 输入 第一行一个正整数,表示数据组数据 ,接下来T行每行一个正整数N 输出 2*T行第2*i-1行表示第i个数据中问题一的解, 第2*i行表示第i个数据中问题二的解, 样例输入 1 1 样例 ...

  4. [CQOI2018]交错序列 (矩阵快速幂,数论)

    [CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...

  5. 【BZOJ-4386】Wycieczki DP + 矩阵乘法

    4386: [POI2015]Wycieczki Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 197  Solved: 49[Submit][Sta ...

  6. Luogu P4643 【模板】动态dp(矩阵乘法,线段树,树链剖分)

    题面 给定一棵 \(n\) 个点的树,点带点权. 有 \(m\) 次操作,每次操作给定 \(x,y\) ,表示修改点 \(x\) 的权值为 \(y\) . 你需要在每次操作之后求出这棵树的最大权独立集 ...

  7. LOJ.6074.[2017山东一轮集训Day6]子序列(DP 矩阵乘法)

    题目链接 参考yww的题解.本来不想写来但是他有一些笔误...而且有些地方不太一样就写篇好了. 不知不觉怎么写了这么多... 另外还是有莫队做法的...(虽然可能卡不过) \(60\)分的\(O(n^ ...

  8. ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)

    We consider problems concerning the number of ways in which a number can be written as a sum. If the ...

  9. 【BZOJ 3326】[Scoi2013]数数 数位dp+矩阵乘法优化

    挺好的数位dp……先说一下我个人的做法:经过观察,发现这题按照以往的思路从后往前递增,不怎么好推,然后我就大胆猜想,从前往后推,发现很好推啊,维护四个变量,从开始位置到现在有了i个数 f[i]:所有数 ...

随机推荐

  1. Linux下inittab文件详解

    /etc/inittab文件详解 Linux系统的启动过程为:加电自检-->根据BIOS中的设置从指定的设备启动-->找到设备MBR中的bootloader引导启动系统-->启动ke ...

  2. [转]CMake快速入门教程:实战

    转自http://blog.csdn.net/ljt20061908/article/details/11736713 0. 前言    一个多月前,由于工程项目的需要,匆匆的学习了一下cmake的使 ...

  3. 关于项目中根据当前数据库中最大ID生成下一个ID问题——(五)

    1.关于部门管理时候根据上级产生下级部门ID的问题(传入一个参数是上级部门id)

  4. Linux硬盘镜像获取与还原(dd、AccessData FTK Imager)

    1.硬盘镜像获取工具:dd dd是Linux/UNIX 下的一个非常有用的命令,作用是用指定大小的块拷贝一个文件,并在拷贝的同时进行指定的转换. 1.1 本地取数据 查看磁盘及分区 # fdisk - ...

  5. aarch64_m2

    mingw32-leptonica-1.74.4-1.fc26.noarch.rpm 2017-06-12 17:20 1.0M fedora Mirroring Project mingw32-le ...

  6. Python 安装requests模块

    window下安装: 注:不要使用 easy_install requests 命令 这种方式安装后不能卸载,建议使用pip 方法 1.自动安装 输入cmd命令进入命令行窗口,执行 pip insta ...

  7. C++链接与装载

    1..obj文件的内部结构 2.映射到进程虚拟空间 3.链接的原理    C++ Code  123456789   1.未解决符号表:提供了所有在该编译单元里引用但是定义并不在本编译单元里的符号及其 ...

  8. python 删除前3天的文件

    一.需求分析 1. 删除前3天的文件 2.如果目录为空,也一并删除掉 如果使用shell脚本,一条命令就搞定了.干啥还要用python? 1. 因为需要记录一些日志,使用shell不好实现 2. 作为 ...

  9. scrapy-redis 更改队列和分布式爬虫

    这里分享两个技巧 1.scrapy-redis分布式爬虫 我们知道scrapy-redis的工作原理,就是把原来scrapy自带的queue队列用redis数据库替换,队列都在redis数据库里面了, ...

  10. Linux下光盘镜像生成和刻录

    mkiosfs命令如在/root/下有文件file1 file2 file3maiosfs -o img.ios file1 file2 file3该命令将file1 file2 file3放入到im ...