HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)
THE MATRIX PROBLEM
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5437 Accepted Submission(s): 1372
Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.
2 3 4
8 2 6
5 2 9
题目意思就是是否存在ai,bj,使得l<=cij*(ai/bj)<=u (1<=i<=n,1<=j<=m)成立
首先,把cij除到两边:l'<=ai/bj<=u',如果差分约束的话,应该是ai-bj的形式,于是可以取对数
log(l')<=log(ai)-log(bj)<=log(u')
把log(ai)和log(bj)看成两个点ai和bj,化成求最短路的形式:dis[ai]-dis[bj]<=log(u'),dis[bj]-dis[ai]<=-log(l')
然后判负环就行,深搜和广搜都可以
注意,如果spfa队列判负环:
(1)不必判断某个点入队次数大于N,只要判断是否大于sqrt(1.0*N)
(2)或者所有点的入队次数大于T*N,即存在负环,一般T取2
N为所有点的个数
1, SPFA广搜:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath> using namespace std; const int N=; struct Edge{
int to,nxt;
double cap;
}edge[N*N]; int n,m,cnt,head[N];
int vis[N],Count[N];
double dis[N],L,U; void addedge(int cu,int cv,double cw){
edge[cnt].to=cv; edge[cnt].cap=cw; edge[cnt].nxt=head[cu];
head[cu]=cnt++;
} int SPFA(){
int limit=(int)sqrt(1.0*(n+m));
queue<int> q;
while(!q.empty())
q.pop();
memset(vis,,sizeof(vis));
memset(Count,,sizeof(Count));
for(int i=;i<=n+m;i++){
dis[i]=;
q.push(i);
}
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].cap){
dis[v]=dis[u]+edge[i].cap;
if(!vis[v]){
vis[v]=;
if(++Count[v]>limit)
return ;
q.push(v);
}
}
}
}
return ;
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d%lf%lf",&n,&m,&L,&U)){
cnt=;
memset(head,-,sizeof(head));
double x;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
scanf("%lf",&x);
addedge(j+n,i,log(U/x));
addedge(i,j+n,-log(L/x));
}
if(SPFA())
puts("YES");
else
puts("NO");
}
return ;
}
2, SPFA深搜:(这个更快??)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath> using namespace std; const int N=; struct Edge{
int to,nxt;
double cap;
}edge[N*N]; int n,m,cnt,head[N];
int vis[N],instack[N];
double dis[N],L,U; void addedge(int cu,int cv,double cw){
edge[cnt].to=cv; edge[cnt].cap=cw; edge[cnt].nxt=head[cu];
head[cu]=cnt++;
} int SPFA(int u){
if(instack[u])
return ;
instack[u]=;
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(dis[v]>dis[u]+edge[i].cap){
dis[v]=dis[u]+edge[i].cap;
if(!SPFA(v))
return ;
}
}
instack[u]=;
return ;
} int solve(){
memset(vis,,sizeof(vis));
memset(instack,,sizeof(instack));
memset(dis,,sizeof(dis));
for(int i=;i<=n+m;i++)
if(!vis[i]){
if(!SPFA(i))
return ;
}
return ;
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d%lf%lf",&n,&m,&L,&U)){
cnt=;
memset(head,-,sizeof(head));
double x;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
scanf("%lf",&x);
addedge(j+n,i,log(U/x));
addedge(i,j+n,-log(L/x));
}
if(solve())
puts("YES");
else
puts("NO");
}
return ;
}
HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)的更多相关文章
- HDU 3666 THE MATRIX PROBLEM (差分约束)
题意:给定一个最大400*400的矩阵,每次操作可以将某一行或某一列乘上一个数,问能否通过这样的操作使得矩阵内的每个数都在[L,R]的区间内. 析:再把题意说明白一点就是是否存在ai,bj,使得l&l ...
- HDU 3666.THE MATRIX PROBLEM 差分约束系统
THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU3666 THE MATRIX PROBLEM (差分约束+取对数去系数)(对退出情况存疑)
You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...
- HDU3666-THE MATRIX PROBLEM(差分约束-不等式解得存在性判断 对数转化)
You have been given a matrix C N*M, each element E of C N*M is positive and no more than 1000, The p ...
- hduTHE MATRIX PROBLEM(差分约束)
题目请戳这里 题目大意:给一个n*m的矩阵,求是否存在这样两个序列:a1,a2...an,b1,b2,...,bm,使得矩阵的第i行乘以ai,第j列除以bj后,矩阵的每一个数都在L和U之间. 题目分析 ...
- HDU 3666 THE MATRIX PROBLEM (差分约束,最短路)
题意: 给一个n*m矩阵,每个格子上有一个数字a[i][j],给定L和U,问:是否有这样两个序列{a1...an}和{b1...bn},满足 L<=a[i][j]*ai/bj<=U .若存 ...
- hdu 3666 THE MATRIX PROBLEM
差分约束系统. 根据题意,可以写出不等式 L <= (Xij * Ai) / Bj <= U 即 Ai/Bj<=U/Xij和Ai/Bj>=L/Xij 由于差分约束系统是减法.. ...
- hdu 1534 Schedule Problem (差分约束)
Schedule Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- poj3083 Children of the Candy Corn 深搜+广搜
这道题有深搜和广搜.深搜还有要求,靠左或靠右.下面以靠左为例,可以把简单分为上北,下南,左西,右东四个方向.向东就是横坐标i不变,纵坐标j加1(i与j其实就是下标).其他方向也可以这样确定.通过上一步 ...
随机推荐
- 快速入门:十分钟学会PythonTutorial - Learn Python in 10 minutes
This tutorial is available as a short ebook. The e-book features extra content from follow-up posts ...
- 常用的OpenCV函数速查
常用的OpenCV函数速查 1.cvLoadImage:将图像文件加载至内存: 2.cvNamedWindow:在屏幕上创建一个窗口: 3.cvShowImage:在一个已创建好的窗口中显示图像: 4 ...
- bzoj 1975 [Sdoi2010]魔法猪学院
1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1758 Solved: 557[Submit][Statu ...
- [leetcode]Single Number II @ Python
原题地址:http://oj.leetcode.com/problems/single-number-ii/ 题意:Given an array of integers, every element ...
- jQuery练手:仿新浪微博图片文字列表淡进淡出上下滚动效果
1.效果及功能说明 仿新浪微博图片文字列表上下淡进淡出间歇上下滚动 2.实现原理 首先要设定div内只能显示4个图片那么多出来的图片会自动隐藏然后在给图片添加一个动画的事件让他们可以滚动的播放出来上下 ...
- windows安装go-sqlite3失败,提示找不到gcc
windows安装go-sqlite3失败,提示找不到gcc go get github.com/mattn/go-sqlite3时失败,提示exec: “gcc”: executable file ...
- Godaddy ssl续费更新问题总结
之前客户在Godaddy 上购买的ssl证书过期了,但客户续费后打开https时却提示证书过期了 进行Godaddy 后台看到证书确实是过期的 但在账户里也确实看到ssl续费成功了 猜想可能是ssl续 ...
- Asp.net 恢复页面内用户控件内的控件ClientID
众所周知在Asp.net中如果一个页面添加了一个用户控件(或母版页),那么用户控件内的控件的 ClientID号会被自动添加页面中用户控件的ClientID 即页面中的控件内的控件ClientID ...
- Sqlserver存储过程生成日期维度
话不多说,之前已经有一篇日志是利用oracle的存储过程生成日期维度表,接下来我们就用sqlserver来实现这个操作,如下面的步骤所示 1:创建日期维度表(Dim_time) USE [DW] GO ...
- const char * 转换为char*
可以用const_cast const char* aa = "this is a const string."; char* bb = const_cast< ...