洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)
题意
Sol
枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7;
LL INF = 2e18 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, w[MAXN], d[MAXN], s[MAXN], sw[MAXN], g[MAXN], f[MAXN], q[MAXN];
int calc(int l, int r) {
if(l > r) return 0;
return s[r] - s[l - 1] - d[l - 1] * (sw[r] - sw[l - 1]);
}
double Y(int x) {
return g[x];
}
double X(int x) {
return d[x];
}
double slope(int a, int b) {
return double(Y(b) - Y(a)) / (X(b) - X(a));
}
signed main() {
N = read();
for(int i = 1; i <= N; i++) w[i] = read(), d[i] = read();
reverse(w + 1, w + N + 1); reverse(d + 1, d + N + 1);
for(int i = 1; i <= N; i++) d[i] += d[i - 1], s[i] = s[i - 1] + w[i] * d[i], sw[i] = w[i] + sw[i - 1];
LL ans = INF;
for(int i = 1; i <= N; i++) g[i] = calc(1, i - 1)- s[i] + d[i] * sw[i];
q[1] = 0;
for(int i = 1, h = 1, t = 1; i <= N; i++) {
f[i] = INF;
while(h < t && slope(q[h], q[h + 1]) < sw[i - 1]) h++;
f[i] = g[q[h]] - d[q[h]] * sw[i - 1];
while(h < t && slope(q[t - 1], q[t]) > slope(q[t], i)) t--;
q[++t] = i;
//for(int j = i - 1; j >= 1; j--) chmin(f[i], g[j] - d[j] * sw[i - 1]);
f[i] += s[i - 1];
}
for(int i = 1; i <= N; i++)
f[i] += calc(i + 1, N), chmin(ans, f[i]);
cout << ans;
return 0;
}
/*
*/
洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)的更多相关文章
- 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)
传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)
传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...
- 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)
qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...
- 【洛谷 P4360】 [CEOI2004]锯木厂选址(斜率优化)
题目链接 一开始我的\(dp\)方程列错了,其实也不能说列错了,毕竟我交上去还是把暴力的分都拿到了,只是和题解的不一样,然后搞半天没搞出来去看题解,又看不懂,对不上,原来状态设置不一样自闭了. \(f ...
- P4360 [CEOI2004]锯木厂选址
P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...
- 【BZOJ2684】【CEOI2004】锯木厂选址(斜率优化,动态规划)
[BZOJ2684][CEOI2004]锯木厂选址(斜率优化,动态规划) 题面 万恶的BZOJ因为权限题的原因而做不了... 我要良心的提供题面 Description 从山顶上到山底下沿着一条直线种 ...
- luogu4360 锯木厂选址 (斜率优化dp)
设: sw[i]为1..i的w之和 sd[i]为1到i的距离 cost[i]为把第一个锯木厂建在i带来的花费 all[i,j]为把i..j所有木头运到j所需要的花费 所以$all[i,j]=cost[ ...
- [BSOJ2684]锯木厂选址(斜率优化)
Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂.木材只能按照一个方向运输:朝山下运.山脚下有一个锯木厂 ...
- luogu P4360 [CEOI2004]锯木厂选址
斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...
随机推荐
- nodejs实现请求代理
通常我们常用的请求方法只有GET.POST.PUT和DELETE,所以在此只介绍这四种和文件上传的代理方式 在此我们使用request.js第三方模块实现 GET(DELETE同GET,将reques ...
- 2019 OO第一单元总结(表达式求导)
一. 基于度量的程序结构分析 1. 第一次作业 这次作业是我上手的第一个java程序,使用了4个类来实现功能.多项式采用两个arraylist来存,系数和幂指数一一对应. private ArrayL ...
- centos7系统的进程管理
使用top命令,实时查看后台的进程,会看到以下信息 官方的解释: us: user cpu time (or) % CPU time spent in user space sy: system cp ...
- c++之sleep函数
c++之sleep函数 c++中使用sleep函数需要导入第三方库,标准库中没有该函数实现. 我们导入window.h使用Sleep()方法,注意:第一个S要大写,括号中的表示的整数倍的毫秒 Slee ...
- 语义分割Semantic Segmentation研究综述
语义分割和实例分割概念 语义分割:对图像中的每个像素都划分出对应的类别,实现像素级别的分类. 实例分割:目标是进行像素级别的分类,而且在具体类别的基础上区别不同的实例. 语义分割(Semantic S ...
- Java学习之路(十二):IO流
IO流的概述及其分类 IO流用来处理设备之间的数据传输,Java对数据的操作是通过流的方式 Java用于操作流的类都在IO包中 流按流向分为两种:输入流(读写数据) 输出流(写数据) 流按操作 ...
- Django中涉及金融的项目
在Django中,如果一个项目涉及了金融,他的要求是十分严格的. 所以嘞,这里就有一些坑,很多坑,第一次开发的时候很容易出现一系列的错误 在涉及金融计算的地方,不能使用float类型 什么鬼,但事实就 ...
- scala combineByKey用法说明
语法是: combineByKey[C]( createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: ( ...
- 在CentOS上装Redis
Redis官网 $ wget http://download.redis.io/releases/redis-3.2.5.tar.gz $ tar xzf redis-.tar.gz $ cd red ...
- log4net udp
官方文档: http://logging.apache.org/log4net/release/config-examples.html 配置: <?xml version="1.0& ...