HDU 2256 Problem of Precision(矩阵高速幂)
题目地址:HDU 2256
思路:
(sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n;
这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6);
an+bn*(sqrt(6))=(5+2*sqrt(6))*(a(n-1)+b(n-1)*sqrt(6))
=(5*a(n-1)+12*b(n-1))+(2*a(n-1)+5*b(n-1))*sqrt(6);
显然,an=5*a(n-1)+12*b(n-1);bn=2*a(n-1)+5*b(n-1);
此时能够非常easy的构造出一个矩阵来高速求an和bn:
5,12
2,5
那么下一步应该怎么办呢?对于我等菜渣来说最好的办法当然是。。打表。。找规律。。
然后规律就是ans=2*an-1;
那么怎么证明呢?证明例如以下:
(5+2*sqrt(6))^n=an+bn*sqrt(6); (5-2*sqrt(6))^n=an-bn*sqrt(6);
(5+2*sqrt(6))^n+(5-2*sqrt(6))^n=2*an;
然后,因为
(5-2*sqrt(6))^n=(0.101....)^n<1;
再因为
(5+2*sqrt(6))^n=2*an-(5-2*sqrt(6))^n
可得
2*an-1<(5+2*sqrt(6))^n<2*an;
所以对(5+2*sqrt(6))^n向下取整的结果一定是2*an-1;
证明完成。
所以说仅仅要用矩阵高速幂求出an就可以。
代码例如以下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm> using namespace std;
const int mod=1024;
struct matrix
{
int ma[3][3];
}init, res;
matrix Mult(matrix x, matrix y)
{
matrix tmp;
int i, j, k;
for(i=0;i<2;i++)
{
for(j=0;j<2;j++)
{
tmp.ma[i][j]=0;
for(k=0;k<2;k++)
{
tmp.ma[i][j]=(tmp.ma[i][j]+x.ma[i][k]*y.ma[k][j])%mod;
}
}
}
return tmp;
}
matrix Pow(matrix x, int k)
{
int i, j;
matrix tmp;
for(i=0;i<2;i++) for(j=0;j<2;j++) tmp.ma[i][j]=(i==j);
while(k)
{
if(k&1) tmp=Mult(tmp,x);
x=Mult(x,x);
k>>=1;
}
return tmp;
}
int main()
{
int t, k;
scanf("%d",&t);
while(t--)
{
scanf("%d",&k);
init.ma[0][0]=5;
init.ma[0][1]=12;
init.ma[1][0]=2;
init.ma[1][1]=5;
res=Pow(init,k-1);
int ans=(2*(res.ma[0][0]*5+res.ma[0][1]*2)-1)%mod;
printf("%d\n",ans);
}
return 0;
}

HDU 2256 Problem of Precision(矩阵高速幂)的更多相关文章
- HDU 2256 Problem of Precision (矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2256 最重要的是构建递推式,下面的图是盗来的.貌似这种叫共轭数. #include <iostr ...
- HDU 2256 Problem of Precision(矩阵)
Problem of Precision [题目链接]Problem of Precision [题目类型]矩阵 &题解: 参考:点这里 这题做的好玄啊,最后要添加一项,之后约等于,但是有do ...
- HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出 ...
- LightOJ 1070 Algebraic Problem (推导+矩阵高速幂)
题目链接:problem=1070">LightOJ 1070 Algebraic Problem 题意:已知a+b和ab的值求a^n+b^n.结果模2^64. 思路: 1.找递推式 ...
- hdu 5411 CRB and Puzzle 矩阵高速幂
链接 题解链接:http://www.cygmasot.com/index.php/2015/08/20/hdu_5411/ 给定n个点 常数m 以下n行第i行第一个数字表示i点的出边数.后面给出这些 ...
- HDU 2256 Problem of Precision (矩阵快速幂)(推算)
Problem of Precision Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 2256 Problem of Precision 数论矩阵快速幂
题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5 ...
- HDU 2256 Problem of Precision( 矩阵快速幂 )
链接:传送门 题意:求式子的值,并向下取整 思路: 然后使用矩阵快速幂进行求解 balabala:这道题主要是怎么将目标公式进行化简,化简到一个可以使用现有知识进行解决的一个过程!菜的扣脚...... ...
- HDU 2256 Problem of Precision (矩阵乘法)
Problem of Precision Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
随机推荐
- 【Java VisualVM】使用 VisualVM 进行性能分析及调优
转载:https://blog.csdn.net/lmb55/article/details/79267277 一.概述 开发大型 Java 应用程序的过程中难免遇到内存泄露.性能瓶颈等问题,比如文件 ...
- C#.NET常见问题(FAQ)-interface接口如何理解
个人把interface理解为一种比较特殊的判断技巧,不是常规的变量类型比如判断字符串,判断数组,而是判断类的实例是否拥有某些属性或者方法(比如有十个女的穿一样的衣服,头上盖住,让新郎去猜哪一个是他的 ...
- HTTP和Socket的区别
1: HTTP协议即超文本传送协议(Hypertext Transfer Protocol ),是Web联网的基础,也是手机联网常用的协议之一,HTTP协议是建立在TCP协议之上的一种应用. HTTP ...
- 【JavaScript】实现复选框的全选、全部不选、反选
以较为简洁的程序实现复选框的全选.全部不选.反选 操作. 并且将可变的部分设置为JS的参数,以实现代码复用. 全选和全不选 第一个参数为复选框名称,第二个参数为是全选还是全部不选. function ...
- UNIX网络编程读书笔记:辅助数据
辅助数据(ancillary data)可通过调用sendmsg和recvmsg这两个函数,使用msghdr结构中的msg_control和msg_controllen这两个成员发送和接收. 辅助数据 ...
- linux上安装BeatifulSoup(第三方python库)
1. 什么是beatifulsoup? beatifulsoup官网http://www.crummy.com/software/BeautifulSoup/ BeatifulSoup是用Python ...
- Android OpenGL ES(四)----调整屏幕的宽高比
1.宽高比问题 我们如今相当熟悉这样一个事实,在OpenGL里,我们要渲染的一切物体都要映射到X轴和Y轴上[-1,1]的范围内,对于Z轴也一样.这个范围内的坐标被称为归一化设备坐标,其独立于屏幕实际尺 ...
- 算法笔记_168:历届试题 矩阵翻硬币(Java)
目录 1 问题描述 2 解决方案 1 问题描述 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬币进行 Q 操作的定义: ...
- 用javascript的isNan()函数,可以判断是否为数字
var getstockid = $.trim($("#SearchString").val()); if (!isNaN(getstockid)) alert('是数字!'); ...
- MySQL主从同步的一个小问题解决
由于历史遗留问题,我们的MySQL主从库的表结构不一致,主库的某个表tableA比从库表tableA少了一个字段. 当尝试在主库上更改表结构时,这行alter语句会随着binlog同步到从库,如果从库 ...